Lecture 22

May $6^{\text {th }}, 2004$

Define $u^{+}:=\max \{u, 0\}, u^{-}:=\min \{u, 0\}$. For a generalized function $u \in W^{1,2}(\Omega)$ we say $u \leq 0$ on $\partial \Omega$ if $u^{+} \in W_{0}^{1,2}(\Omega)$. Similarly we say $u \leq v$ on $\partial \Omega$ if $u-v \leq 0$ on $\partial \Omega$. Finally define $\sup _{\partial \Omega} u:=\inf \{c: u \leq c$ on $\partial \Omega\}$.

Weak L^{2} Maximum Principle

$\mathcal{W e}$ consider the divergence form equation

$$
L u:=\mathrm{D}_{i}\left(a^{i j} \mathrm{D}_{j} u\right)+b^{i} \mathrm{D}_{i} u+c u=f,
$$

with $c \leq 0$.

Theorem. Suppose $u \in W^{1,2}(\Omega)$. Assume

> • $c \leq 0$
> • L strictly elliptic with $\left(a^{i j}\right)>\gamma \cdot I, \gamma>0$
> - $\left\|b^{i}\right\|_{C^{0}(\Omega)} \leq \Lambda$
> - $f \in W^{k, 2}(\Omega)$
> Then $\left\{\begin{array}{l}\text { If } L u \geq 0 \text { then } \sup _{\Omega} u \leq \sup _{\partial \Omega} u^{+} . \\ \text {If } L u \leq 0 \text { then } \inf _{\Omega} u \geq \inf _{\partial \Omega} u^{-} . \\ \text {If } c=0 \text { then the above holds with }|u| \text { instead of } u .\end{array}\right.$

The last conclusion follows from the first two since in that case u and $-u$ each satisfy one inequality.

Proof. From the statement we have that u satisfies an inequality in the weak sense, the integral inequality

$$
\begin{aligned}
\forall v \in W_{0}^{1,2}(\Omega) \quad & -\int_{\Omega} a^{i j} \mathrm{D}_{j} u \mathrm{D}_{i} v+\int_{\Omega}\left(b^{i} \mathrm{D}_{i} u+c u\right) v \geq 0 \\
\text { or } \quad & \int_{\Omega} a^{i j} \mathrm{D}_{j} u \mathrm{D}_{i} v \leq \int_{\Omega} b^{i} \mathrm{D}_{i} u v+\int_{\Omega} c u v .
\end{aligned}
$$

Now restrict to v such that $u \cdot v \geq 0$. Since $c \leq 0$

$$
\int_{\Omega} a^{i j} \mathrm{D}_{j} u \mathrm{D}_{i} v \leq \int_{\Omega} b^{i} \mathrm{D}_{i} u v \leq \Lambda \int_{\Omega} v|\mathrm{D} u|
$$

If $\sup _{\Omega} u>\sup _{\partial \Omega} u^{+}$then choose $k \in \mathbb{R}$ such that $\sup _{\partial \Omega} u^{+} \leq k<\sup _{\Omega} u$. Now pick a specific v, $v:=(u-k)^{+}$. This v is 0 everywhere except where u exceed k, and in particular where it exceeds the supremum of the boundary values. Indeed we have $v \in W_{0}^{1,2}(\Omega)$ as well as

$$
\mathrm{D} v=\left\{\begin{array}{lll}
\mathrm{D} u & \text { for } u>k & (\text { there } v>0) \\
0 & \text { for } u \leq k & (\text { there } v=0)
\end{array} .\right.
$$

And so

$$
\int_{\Omega} a^{i j} \mathrm{D}_{j} v \mathrm{D}_{i} v \leq \Lambda \int_{\Gamma} v|\mathrm{D} v|
$$

where $\Gamma:=\operatorname{supp} \mathrm{D} v \subseteq \operatorname{supp} v$. Now by strict ellipticity the LhS majorizes $\lambda \int_{\Omega}|\mathrm{D} v|^{2}$ hence

$$
\lambda\|\mathrm{D} v\|_{L^{2}(\Omega)}^{2}=\lambda \int_{\Omega}|\mathrm{D} v|^{2} \leq \Lambda \int_{\Gamma} v|\mathrm{D} v| \leq \Lambda\|v\|_{L^{2}(\Gamma)}\|\mathrm{D} v\|_{L^{2}(\Omega)}
$$

by the Hölder Inequality (HI) (for $p=q=2$) and therefore

$$
\begin{aligned}
\|\mathrm{D} v\|_{L^{2}(\Omega)} \leq c(\lambda, \Lambda) \cdot\|v\|_{L^{2}(\Gamma)}=c \cdot\left(\int_{\Gamma} v^{2}\right)^{\frac{1}{2}} & \leq c \cdot\left(\left\{\int_{\Gamma}\left(v^{2}\right)^{\frac{n}{n-2}}\right\}^{\frac{n-2}{n}}\left\{\int_{\Gamma} 1^{\frac{n}{2}}\right\}^{\frac{2}{n}}\right)^{\frac{1}{2}} \\
& =c \cdot \operatorname{Vol}(\Gamma)^{\frac{1}{n}}\|v\|_{L^{\frac{2 n}{n-2}}(\Gamma)}
\end{aligned}
$$

once again by the HI for $p=\frac{n}{n-2}, q=\frac{n}{2}$. On the other hand by the Sobolev Embedding $\|v\|_{L^{\frac{2 n}{n-2}(\Omega)}} \leq C| | \mathrm{D} v \|_{L^{2}(\Omega)}$ and so over all

$$
\|v\|_{L^{\frac{2 n}{n-2}}(\Omega)} \leq C\|\mathrm{D} v\|_{L^{2}(\Omega)} \leq C\|v\|_{L^{2}(\Omega)} c \cdot \operatorname{Vol}(\Gamma)^{\frac{1}{n}}\|v\|_{L^{\frac{2 n}{n-2}}(\Omega)}
$$

and therefore $\operatorname{Vol}(\Gamma)^{\frac{1}{n}} \geq \tilde{C}$ where the constant is independent of $k!$ (note $v \in L^{2}(\Omega)$). Let therefore $k \rightarrow \sup _{\Omega} u$. Then we see u must still attain its maximum on a set of positive measure! But then $\mathrm{D} v=\mathrm{D} u=0$ there! Which in turn contradicts this previous bound on the volume of $\Gamma=\operatorname{supp}(\mathrm{D} v)$. So we conclude that there exists no $k \in\left[\sup _{\partial \Omega} u^{+}, \sup _{\Omega} u\right)$, in other words $\sup _{\partial \Omega} u^{+} \geq \sup _{\Omega} u$. The second case of the Theorem follows now since if $L u \leq 0$ then $L(-u) \geq 0$ and the first case applies.

Corollary. Let L be strictly elliptic with $c \leq 0$. Assume $u \in W_{0}^{1,2}(\Omega)$ satisfies Lu $=0$ on Ω. Then $u=0$ on Ω.

An a priori Estimate

We improve slightly on the aesthetics of the higher regularity proved in the previous lecture for the case $c \leq 0$.

Theorem. Let $u \in W_{0}^{1,2}(\Omega) \cap W^{k+2,2}(\Omega)$ be a weak solution of $L u=f$ in Ω, and assume

- L strictly elliptic with $\left(a^{i j}\right)>\gamma \cdot I, \gamma>0$
- $a^{i j} \in \mathcal{C}^{k, 1}(\bar{\Omega})$
- $b^{i}, c \in \mathcal{C}^{k-1,1}(\bar{\Omega}) \quad\left(\right.$ for $\left.k=0, \mathcal{C}^{-1,1}:=\mathcal{C}^{0}=L^{\infty}\right)$
- $f \in W^{k, 2}(\Omega)$
- $\partial \Omega$ is \mathcal{C}^{k+2}

Then

$$
\|u\|_{W^{k+2,2}(\Omega)} \leq c \cdot\|L u\|_{W^{k, 2}(\Omega)} .
$$

Note that the assumption $u \in W^{k+2,2}(\Omega)$ is superfluous once $u \in W_{0}^{1,2}(\Omega)$ in light of our previous results.

Also note that this is exactly analogous to what we did in our Hölder theory study; there we proved $L u=f \in \mathcal{C}^{k, \alpha}(\Omega), c \leq 0$ implies $\|u\|_{C^{k+2, \alpha}(\Omega)} \leq c\|f\|_{C^{k, \alpha}(\Omega)}$.

Proof. Case $k=0$. We want to prove $\|u\|_{W^{2,2}(\Omega)} \leq c \cdot\|L u\|_{W^{2,2}(\Omega)}$. and we already know that

$$
\|u\|_{W^{2,2}(\Omega)} \leq c \cdot\left(\|u\|_{L^{2}(\Omega)}+\|L u\|_{W^{2,2}(\Omega)}\right),
$$

so we now try to demonstrate $\|u\|_{L^{2}(\Omega)} \leq c\|L u\|_{W^{2,2}(\Omega)}$ for all $u \in W^{2,2}(\Omega) \cap W_{0}^{1,2}(\Omega)$. If not, pick a sequence $\left\{u_{m}\right\} \subseteq W^{2,2}(\Omega) \cap W_{0}^{1,2}(\Omega)$ with $\left\|u_{m}\right\|_{L^{2}(\Omega)}=1,\left\|L u_{m}\right\|_{W^{2,2}(\Omega)} \xrightarrow{m \rightarrow \infty} 0$ and hence by what we know

$$
\left\|u_{m}\right\|_{W^{2,2}(\Omega)} \leq c .
$$

Since $W^{2,2}(\Omega)$ is a Hilbert space exists a subsequence which converges weakly to $u \in W^{2,2}(\Omega)$ (note Alouglou's Theorem applies as we have separability and every Hilbert space is a reflexive Banach space). Since $W^{2,2}(\Omega) \hookrightarrow L^{2}(\Omega)$ is a compact embedding we actually have $u_{m} \rightarrow u \in L^{2}(\Omega)$ (i.e strongly). But now $\left\|L u_{m}\right\|_{L^{2}(\Omega)} \rightarrow 0$, hence $L u=0$ weakly. Since $c \leq 0$ this implies by our previous work $u=0!$ In contradiction with $\left\|u_{m}\right\|_{L^{2}(\Omega)}=1$ as $u_{m} \rightarrow u$ in $L^{2}(\Omega)$ so $\|u\|_{L^{2}(\Omega)}=1$ allora . . .

Corollary. Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded domain with \mathcal{C}^{k+2} boundary. Then the map

$$
\Delta: W^{k+2,2}(\Omega) \cap W_{0}^{1,2}(\Omega) \longrightarrow W^{k, 2}(\Omega)
$$

is an isomorphism.

Proof. Injective: By the previous Corollary if $L\left(u_{1}-u_{2}\right)=0$ on Ω and $u_{1}-u_{2} \in W_{0}^{1,2}(\Omega)$ then $u_{1}-u_{2}=0$. This actually applies also to any two such functions in $W^{1,2}(\Omega)$ with equal boundary values.

Surjective: Let $f \in W^{k, 2}(\Omega)$. We can find a solution $L u=f$ with u in $W_{0}^{2,2}(\Omega)$ by Riesz Representation Theorem and our regularity theory. So Δ^{-1} exists and by our above Theorem satisfies

$$
\left\|\Delta^{-1} f\right\|_{W^{k+2,2}(\Omega)} \leq C \cdot\|f\|_{W^{k, 2}(\Omega)}
$$

So Δ^{-1} is continuous. From the definition of Δ we see that

$$
\|\Delta u\|_{W^{k, 2}(\Omega)} \leq\|u\|_{W^{k+2,2}(\Omega)}
$$

(note no constant on RHS) we see also Δ itself is a continuous map between those spaces (WrT to their topologies).

Corollary. For appropriate L (see above Theorems) with $c \leq 0$

$$
L: W^{k+2,2}(\Omega) \cap W_{0}^{1,2}(\Omega) \longrightarrow W^{k, 2}(\Omega)
$$

is an isomorphism.

Proof. Injective: Exactly as above.
Surjective: We employ the Continuity Method (CM) which will work out exactly as in the Schauder case. Consider the family of equations

$$
L_{t} u:=(1-t) \mathrm{D} u+t L u=f .
$$

Recall that the CM will provide for the surjectivity of L based on the surjectivity of Δ (proved above) once we can prove

$$
\|u\|_{W^{k+2,2}(\Omega)} \leq c \cdot\left\|L_{t} u\right\|_{W^{k, 2}(\Omega)}
$$

with c independent of t. And this is indeed the case since each of the L_{t} satisfies the assumptions of the previous Theorem.

Negative Sobolev Spaces

What happens for the $k=-1$ case? Where does Δ map to? Δu is not defined as a function, though it is as a distribution: given $v \in W_{0}^{1,2}(\Omega)$ one can define

$$
\Delta u(v):=-\int_{\Omega} \nabla u \cdot \nabla v
$$

which realizes Δu as a linear functional on $W_{0}^{1,2}(\Omega)$, in other words

$$
\Delta: W_{0}^{1,2}(\Omega) \longrightarrow\left(W_{0}^{1,2}(\Omega)\right)^{\star} .
$$

The motivation for this definition lies in the fact that when we look at the equation $-\int_{\Omega} \nabla u \cdot \nabla v=$ $\int_{\Omega} \Delta u v$ we actually mean $\int_{\Omega} v \cdot(\Delta u d \mathbf{x})$ and $\Delta u d \mathbf{x}$ gives a distribution under the identification of distributions with measures.

Recall the inner product as we defined it in $W_{0}^{1,2}(\Omega)$ is

$$
(u, v)=+\int_{\Omega} \nabla u \cdot \nabla v
$$

By the Riesz Representation Theorem given any element $F \in\left(W_{0}^{1,2}(\Omega)\right)^{\star}$ there exists a unique $u \in W_{0}^{1,2}(\Omega)$ such that $F(v)=(u, v)$, so

$$
F(v)=(u, v)=+\int_{\Omega} \nabla u \cdot \nabla v=(-\Delta u)(v)
$$

as distributions. Therefore Δ is surjective. Injectivity follows from the definition of Δ. Continuity of the inverse is also provided for by the Riesz Representation Theorem

$$
\|u\|_{W_{0}^{1,2}(\Omega)}=\|-\Delta u\|_{\left(W_{0}^{1,2}(\Omega)\right)^{*}} .
$$

We conclude from this short discussion that $\Delta: W_{0}^{1,2}(\Omega) \longrightarrow\left(W_{0}^{1,2}(\Omega)\right)^{\star}=: W^{-1,2}(\Omega)$ is an isomorphism of Hilbert Spaces. This is a natural extension to our previous results, and adopting this notation they all extend now to the case $k=-1$.

