18. Solutions to (some of) the problems

Solution 18.1 (To Problem 10). (by Matjaž Konvalinka).
Since the topology on \mathbb{N}, inherited from \mathbb{R}, is discrete, a set is compact if and only if it is finite. If a sequence $\left\{x_{n}\right\}$ (i.e. a function $\mathbb{N} \rightarrow \mathbb{C}$) is in $\mathcal{C}_{0}(\mathbb{N})$ if and only if for any $\epsilon>0$ there exists a compact (hence finite) set F_{ϵ} so that $\left|x_{n}\right|<\epsilon$ for any n not in F_{ϵ}. We can assume that $F_{\epsilon}=\left\{1, \ldots, n_{\epsilon}\right\}$, which gives us the condition that $\left\{x_{n}\right\}$ is in $\mathcal{C}_{0}(\mathbb{N})$ if and only if it converges to 0 . We denote this space by c_{0}, and the supremum norm by $\|\cdot\|_{0}$. A sequence $\left\{x_{n}\right\}$ will be abbreviated to x.

Let l^{1} denote the space of (real or complex) sequences x with a finite 1-norm

$$
\|x\|_{1}=\sum_{n=1}^{\infty}\left|x_{n}\right| .
$$

We can define pointwise summation and multiplication with scalars, and $\left(l^{1},\|\cdot\|_{1}\right)$ is a normed (in fact Banach) space. Because the functional

$$
y \mapsto \sum_{n=1}^{\infty} x_{n} y_{n}
$$

is linear and bounded $\left(\left|\sum_{n=1}^{\infty} x_{n} y_{n}\right| \leq \sum_{n=1}^{\infty}\left|x_{n}\right|\left|y_{n}\right| \leq\|x\|_{0}\|y\|_{1}\right)$ by $\|x\|_{0}$, the mapping

$$
\Phi: l^{1} \longmapsto c_{0}^{*}
$$

defined by

$$
x \mapsto\left(y \mapsto \sum_{n=1}^{\infty} x_{n} y_{n}\right)
$$

is a (linear) well-defined mapping with norm at most 1 . In fact, Φ is an isometry because if $\left|x_{j}\right|=\|x\|_{0}$ then $\left|\Phi(x)\left(e_{j}\right)\right|=1$ where e_{j} is the j-th unit vector. We claim that Φ is also surjective (and hence an isometric isomorphism). If φ is a functional on c_{0} let us denote $\varphi\left(e_{j}\right)$ by x_{j}. Then $\Phi(x)(y)=\sum_{n=1}^{\infty} \varphi\left(e_{n}\right) y_{n}=\sum_{n=1}^{\infty} \varphi\left(y_{n} e_{n}\right)=\varphi(y)$ (the last equality holds because $\sum_{n=1}^{\infty} y_{n} e_{n}$ converges to y in c_{0} and φ is continuous with respect to the topology in c_{0}), so $\Phi(x)=\varphi$.

Solution 18.2 (To Problem 29). (Matjaž Konvalinka) Since

$$
\begin{aligned}
D_{x} H(\varphi)=H\left(-D_{x} \varphi\right)= & i \int_{-\infty}^{\infty} H(x) \varphi^{\prime}(x) d x= \\
& i \int_{0}^{\infty} \varphi^{\prime}(x) d x=i(0-\varphi(0))=-i \delta(\varphi)
\end{aligned}
$$

we get $D_{x} H=C \delta$ for $C=-i$.

Solution 18.3 (To Problem 40). (Matjaž Konvalinka) Let us prove this in the case where $n=1$. Define (for $b \neq 0$)

$$
U(x)=u(b)-u(x)-(b-x) u^{\prime}(x)-\ldots-\frac{(b-x)^{k-1}}{(k-1)!} u^{(k-1)}(x) ;
$$

then

$$
U^{\prime}(x)=-\frac{(b-x)^{k-1}}{(k-1)!} u^{(k)}(x)
$$

For the continuously differentiable function $V(x)=U(x)-(1-x / b)^{k} U(0)$ we have $V(0)=V(b)=0$, so by Rolle's theorem there exists ζ between 0 and b with

$$
V^{\prime}(\zeta)=U^{\prime}(\zeta)+\frac{k(b-\zeta)^{k-1}}{b^{k}} U(0)=0
$$

Then

$$
\begin{gathered}
U(0)=-\frac{b^{k}}{k(b-\zeta)^{k-1}} U^{\prime}(\zeta) \\
u(b)=u(0)+u^{\prime}(0) b+\ldots+\frac{u^{(k-1)}(0)}{(k-1)!} b^{k-1}+\frac{u^{(k)}(\zeta)}{k!} b^{k} .
\end{gathered}
$$

The required decomposition is $u(x)=p(x)+v(x)$ for

$$
\begin{gathered}
p(x)=u(0)+u^{\prime}(0) x+\frac{u^{\prime \prime}(0)}{2} x^{2}+\ldots+\frac{u^{(k-1)}(0)}{(k-1)!} x^{k-1}+\frac{u^{(k)}(0)}{k!} x^{k} \\
v(x)=u(x)-p(x)=\frac{u^{(k)}(\zeta)-u^{(k)}(0)}{k!} x^{k}
\end{gathered}
$$

for ζ between 0 and x, and since $u^{(k)}$ is continuous, $(u(x)-p(x)) / x^{k}$ tends to 0 as x tends to 0 .

The proof for general n is not much more difficult. Define the function $w_{x}: I \rightarrow \mathbb{R}$ by $w_{x}(t)=u(t x)$. Then w_{x} is k-times continuously differentiable,

$$
\begin{gathered}
w_{x}^{\prime}(t)=\sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}}(t x) x_{i}, \\
w_{x}^{\prime \prime}(t)=\sum_{i, j=1}^{n} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(t x) x_{i} x_{j}, \\
w_{x}^{(l)}(t)=\sum_{l_{1}+l_{2}+\ldots+l_{i}=l} \frac{l!}{l_{1}!l_{2}!\cdots l_{i}!} \frac{\partial^{l} u}{\partial x_{1}^{l_{1}} \partial x_{2}^{l_{2}} \cdots \partial x_{i}^{l_{i}}}(t x) x_{1}^{l_{1}} x_{2}^{l_{2}} \cdots x_{i}^{l_{i}}
\end{gathered}
$$

so by above $u(x)=w_{x}(1)$ is the sum of some polynomial p (od degree k), and we have

$$
\frac{u(x)-p(x)}{|x|^{k}}=\frac{v_{x}(1)}{|x|^{k}}=\frac{w_{x}^{(k)}\left(\zeta_{x}\right)-w_{x}^{(k)}(0)}{k!|x|^{k}}
$$

so it is bounded by a positive combination of terms of the form

$$
\left|\frac{\partial^{l} u}{\partial x_{1}^{l_{1}} \partial x_{2}^{l_{2}} \cdots \partial x_{i}^{l_{i}}}\left(\zeta_{x} x\right)-\frac{\partial^{l} u}{\partial x_{1}^{l_{1}} \partial x_{2}^{l_{2}} \cdots \partial x_{i}^{l_{i}}}(0)\right|
$$

with $l_{1}+\ldots+l_{i}=k$ and $0<\zeta_{x}<1$. This tends to zero as $x \rightarrow 0$ because the derivative is continuous.

Solution 18.4 (Solution to Problem 41). (Matjž Konvalinka) Obviously the map $\mathcal{C}_{0}\left(\mathbb{B}^{n}\right) \rightarrow \mathcal{C}\left(\mathbb{B}^{n}\right)$ is injective (since it is just the inclusion map), and $f \in \mathcal{C}\left(\mathbb{B}^{n}\right)$ is in $\mathcal{C}_{0}\left(\mathbb{B}^{n}\right)$ if and only if it is zero on $\partial \mathbb{B}^{n}$, ie. if and only if $\left.f\right|_{\mathbb{S}^{n-1}}=0$. It remains to prove that any map g on \mathbb{S}^{n-1} is the restriction of a continuous function on \mathbb{B}^{n}. This is clear since

$$
f(x)= \begin{cases}|x| g(x /|x|) & x \neq 0 \\ 0 & x=0\end{cases}
$$

is well-defined, coincides with f on \mathbb{S}^{n-1}, and is continuous: if M is the maximum of $|g|$ on \mathbb{S}^{n-1}, and $\epsilon>0$ is given, then $|f(x)|<\epsilon$ for $|x|<\epsilon / M$.

Solution 18.5. (partly Matjaž Konvalinka)

For any $\varphi \in \mathcal{S}(\mathbb{R})$ we have

$$
\begin{array}{r}
\left|\int_{-\infty}^{\infty} \varphi(x) d x\right| \leq \int_{-\infty}^{\infty}|\varphi(x)| d x \leq \sup \left(\left(1+\left.x\right|^{2}\right)|\varphi(x)|\right) \int_{-\infty}^{\infty}\left(1+|x|^{2}\right)^{-1} d x \\
\leq C \sup \left(\left(1+\left.x\right|^{2}\right)|\varphi(x)|\right)
\end{array}
$$

Thus $\mathcal{S}(\mathbb{R}) \ni \varphi \longmapsto \int_{\mathbb{R}} \varphi d x$ is continous.
Now, choose $\phi \in \mathcal{C}_{\mathrm{c}}^{\infty}(\mathbb{R})$ with $\int_{\mathbb{R}} \phi(x) d x=1$. Then, for $\psi \in \mathcal{S}(\mathbb{R})$, set

$$
\begin{equation*}
A \psi(x)=\int_{-\infty}^{x}(\psi(t)-c(\psi) \phi(t)) d t, c(\psi)=\int_{-\infty}^{\infty} \psi(s) d s \tag{18.1}
\end{equation*}
$$

Note that the assumption on ϕ means that

$$
\begin{equation*}
A \psi(x)=-\int_{x}^{\infty}(\psi(t)-c(\psi) \phi(t)) d t \tag{18.2}
\end{equation*}
$$

Clearly $A \psi$ is smooth, and in fact it is a Schwartz function since

$$
\begin{equation*}
\frac{d}{d x}(A \psi(x))=\psi(x)-c \phi(x) \in \mathcal{S}(\mathbb{R}) \tag{18.3}
\end{equation*}
$$

so it suffices to show that $x^{k} A \psi$ is bounded for any k as $|x| \rightarrow \pm \infty$. Since $\psi(t)-c \phi(t) \leq C_{k} t^{-k-1}$ in $t \geq 1$ it follows from (18.2) that

$$
\left|x^{k} A \psi(x)\right| \leq C x^{k} \int_{x}^{\infty} t^{-k-1} d t \leq C^{\prime}, k>1, \text { in } x>1
$$

A similar estimate as $x \rightarrow-\infty$ follows from (18.1). Now, A is clearly linear, and it follows from the estimates above, including that on the integral, that for any k there exists C and j such that

$$
\sup _{\alpha, \beta \leq k}\left|x^{\alpha} D^{\beta} A \psi\right| \leq C \sum_{\alpha^{\prime}, \beta^{\prime} \leq j} \sup _{x \in \mathbb{R}}\left|x^{\alpha^{\prime}} D^{\beta^{\prime}} \psi\right| .
$$

Finally then, given $u \in \mathcal{S}^{\prime}(\mathbb{R})$ define $v(\psi)=-u(A \psi)$. From the continuity of $A, v \in \mathcal{S}(\mathbb{R})$ and from the definition of $A, A\left(\psi^{\prime}\right)=\psi$. Thus

$$
d v / d x(\psi)=v\left(-\psi^{\prime}\right)=u\left(A \psi^{\prime}\right)=u(\psi) \Longrightarrow \frac{d v}{d x}=u
$$

Solution 18.6. We have to prove that $\langle\xi\rangle^{m+m^{\prime}} \widehat{u} \in L_{2}\left(\mathbb{R}^{n}\right)$, in other words, that

$$
\int_{\mathbb{R}^{n}}\langle\xi\rangle^{2\left(m+m^{\prime}\right)}|\widehat{u}|^{2} d \xi<\infty
$$

But that is true since

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\langle\xi\rangle^{2\left(m+m^{\prime}\right)}|\widehat{u}|^{2} d \xi=\int_{\mathbb{R}^{n}}\langle\xi\rangle^{2 m^{\prime}}\left(1+\xi_{1}^{2}+\ldots+\xi_{n}^{2}\right)^{m}|\widehat{u}|^{2} d \xi= \\
= & \int_{\mathbb{R}^{n}}\langle\xi\rangle^{2 m^{\prime}}\left(\sum_{|\alpha| \leq m} C_{\alpha} \xi^{2 \alpha}\right)|\widehat{u}|^{2} d \xi=\sum_{|\alpha| \leq m} C_{\alpha}\left(\int_{\mathbb{R}^{n}}\langle\xi\rangle^{2 m^{\prime}} \xi^{2 \alpha}|\widehat{u}|^{2} d \xi\right)
\end{aligned}
$$

and since $\langle\xi\rangle^{m^{\prime}} \xi^{\alpha} \widehat{u}=\langle\xi\rangle^{m^{\prime}} \widehat{D^{\alpha} u}$ is in $L^{2}\left(\mathbb{R}^{n}\right)$ (note that $u \in H^{m}\left(\mathbb{R}^{n}\right)$ follows from $\left.D^{\alpha} u \in H^{m^{\prime}}\left(\mathbb{R}^{n}\right),|\alpha| \leq m\right)$. The converse is also true since C_{α} in the formula above are strictly positive.
Solution 18.7. Take $v \in L^{2}\left(\mathbb{R}^{n}\right)$, and define subsets of \mathbb{R}^{n} by

$$
\begin{gathered}
E_{0}=\{x:|x| \leq 1\} \\
E_{i}=\left\{x:|x| \geq 1,\left|x_{i}\right|=\max _{j}\left|x_{j}\right|\right\}
\end{gathered}
$$

Then obviously we have $1=\sum_{i=0}^{n} \chi_{E_{j}}$ a.e., and $v=\sum_{j=0}^{n} v_{j}$ for $v_{j}=$ $\chi_{E_{j}} v$. Then $\langle x\rangle$ is bounded by $\sqrt{2}$ on E_{0}, and $\langle x\rangle v_{0} \in L^{2}\left(\mathbb{R}^{n}\right)$; and on $E_{j}, 1 \leq j \leq n$, we have

$$
\frac{\langle x\rangle}{\left|x_{j}\right|} \leq \frac{\left(1+n\left|x_{j}\right|^{2}\right)^{1 / 2}}{\left|x_{j}\right|}=\left(n+1 /\left|x_{j}\right|^{2}\right)^{1 / 2} \leq(2 n)^{1 / 2}
$$

so $\langle x\rangle v_{j}=x_{j} w_{j}$ for $w_{j} \in L^{2}\left(\mathbb{R}^{n}\right)$. But that means that $\langle x\rangle v=w_{0}+$ $\sum_{j=1}^{n} x_{j} w_{j}$ for $w_{j} \in L^{2}\left(\mathbb{R}^{n}\right)$.
If u is in $L^{2}\left(\mathbb{R}^{n}\right)$ then $\widehat{u} \in L^{2}\left(\mathbb{R}^{n}\right)$, and so there exist $w_{0}, \ldots, w_{n} \in$ $L^{2}\left(\mathbb{R}^{n}\right)$ so that

$$
\langle\xi\rangle \widehat{u}=w_{0}+\sum_{j=1}^{n} \xi_{j} w_{j}
$$

in other words

$$
\widehat{u}=\widehat{u}_{0}+\sum_{j=1}^{n} \xi_{j} \widehat{u}_{j}
$$

where $\langle\xi\rangle \widehat{u}_{j} \in L^{2}\left(\mathbb{R}^{n}\right)$. Hence

$$
u=u_{0}+\sum_{j=1}^{n} D_{j} u_{j}
$$

where $u_{j} \in H^{1}\left(\mathbb{R}^{n}\right)$.
Solution 18.8. Since
$D_{x} H(\varphi)=H\left(-D_{x} \varphi\right)=i \int_{-\infty}^{\infty} H(x) \varphi^{\prime}(x) d x=i \int_{0}^{\infty} \varphi^{\prime}(x) d x=i(0-\varphi(0))=-i \delta(\varphi)$,
we get $D_{x} H=C \delta$ for $C=-i$.
Solution 18.9. It is equivalent to ask when $\langle\xi\rangle^{m} \widehat{\delta_{0}}$ is in $L^{2}\left(\mathbb{R}^{n}\right)$. Since

$$
\widehat{\delta_{0}}(\psi)=\delta_{0}(\widehat{\psi})=\widehat{\psi}(0)=\int_{\mathbb{R}^{n}} \psi(x) d x=1(\psi)
$$

this is equivalent to finding m such that $\langle\xi\rangle^{2 m}$ has a finite integral over \mathbb{R}^{n}. One option is to write $\langle\xi\rangle=\left(1+r^{2}\right)^{1 / 2}$ in spherical coordinates, and to recall that the Jacobian of spherical coordinates in n dimensions has the form $r^{n-1} \Psi\left(\varphi_{1}, \ldots, \varphi_{n-1}\right)$, and so $\langle\xi\rangle^{2 m}$ is integrable if and only if

$$
\int_{0}^{\infty} \frac{r^{n-1}}{\left(1+r^{2}\right)^{m}} d r
$$

converges. It is obvious that this is true if and only if $n-1-2 m<-1$, ie. if and only if $m>n / 2$.
Solution 18.10 (Solution to Problem31). We know that $\delta \in H^{m}\left(\mathbb{R}^{n}\right)$ for any $m<-n / 1$. Thus is just because $\langle\xi\rangle^{p} \in L^{2}\left(\mathbb{R}^{n}\right)$ when $p<-n / 2$. Now, divide \mathbb{R}^{n} into $n+1$ regions, as above, being $A_{0}=\{\xi ;|\xi| \leq 1$ and $A_{i}=\left\{\xi ;\left|\xi_{i}\right|=\sup _{j}\left|\xi_{j}\right|,|\xi| \geq 1\right\}$. Let v_{0} have Fourier transform $\chi_{A_{0}}$ and for $i=1, \ldots, n, v_{i} \in \mathcal{S} ;\left(\mathbb{R}^{n}\right)$ have Fourier transforms $\xi_{i}^{-n-1} \chi_{A_{i}}$. Since $\left|\xi_{i}\right|>c\langle\xi\rangle$ on the support of $\widehat{v_{i}}$ for each $i=1, \ldots, n$, each term
is in H^{m} for any $m<1+n / 2$ so, by the Sobolev embedding theorem, each $v_{i} \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
1=\hat{v}_{0} \sum_{i=1}^{n} \xi_{i}^{n+1} \widehat{v}_{i} \Longrightarrow \delta=v_{0}+\sum_{i} D_{i}^{n+1} v_{i} . \tag{18.4}
\end{equation*}
$$

How to see that this cannot be done with n or less derivatives? For the moment I do not have a proof of this, although I believe it is true. Notice that we are actually proving that δ can be written

$$
\begin{equation*}
\delta=\sum_{|\alpha| \leq n+1} D^{\alpha} u_{\alpha}, u_{\alpha} \in H^{n / 2}\left(\mathbb{R}^{n}\right) \tag{18.5}
\end{equation*}
$$

This cannot be improved to n from $n+1$ since this would mean that $\delta \in H^{-n / 2}\left(\mathbb{R}^{n}\right)$, which it isn't. However, what I am asking is a little more subtle than this.

