9. Fourier inversion

It is shown above that the Fourier transform satisfies the identity

$$
\begin{equation*}
\varphi(0)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} \hat{\varphi}(\xi) d \xi \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{9.1}
\end{equation*}
$$

If $y \in \mathbb{R}^{n}$ and $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ set $\psi(x)=\varphi(x+y)$. The translationinvariance of Lebesgue measure shows that

$$
\begin{aligned}
\hat{\psi}(\xi) & =\int e^{-i x \cdot \xi} \varphi(x+y) d x \\
& =e^{i y \cdot \xi} \hat{\varphi}(\xi)
\end{aligned}
$$

Applied to ψ the inversion formula (9.1) becomes

$$
\begin{align*}
\varphi(y) & =\psi(0)=(2 \pi)^{-n} \int \hat{\psi}(\xi) d \xi \tag{9.2}\\
& =(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i y \cdot \xi} \hat{\varphi}(\xi) d \xi
\end{align*}
$$

Theorem 9.1. Fourier transform $\mathcal{F}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ is an isomorphism with inverse

$$
\begin{equation*}
\mathcal{G}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right), \mathcal{G} \psi(y)=(2 \pi)^{-n} \int e^{i y \cdot \xi} \psi(\xi) d \xi \tag{9.3}
\end{equation*}
$$

Proof. The identity (9.2) shows that \mathcal{F} is $1-1$, i.e., injective, since we can remove φ from $\hat{\varphi}$. Moreover,

$$
\begin{equation*}
\mathcal{G} \psi(y)=(2 \pi)^{-n} \mathcal{F} \psi(-y) \tag{9.4}
\end{equation*}
$$

So \mathcal{G} is also a continuous linear map, $\mathcal{G}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$. Indeed the argument above shows that $\mathcal{G} \circ \mathcal{F}=I d$ and the same argument, with some changes of sign, shows that $\mathcal{F} \cdot \mathcal{G}=I d$. Thus F and \mathcal{G} are isomorphisms.

Lemma 9.2. For all $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, Paseval's identity holds:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \varphi \bar{\psi} d x=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} \hat{\varphi} \overline{\hat{\psi}} d \xi \tag{9.5}
\end{equation*}
$$

Proof. Using the inversion formula on φ,

$$
\begin{aligned}
\int \varphi \bar{\psi} d x & =(2 \pi)^{-n} \int\left(e^{i x \cdot \xi} \hat{\varphi}(\xi) d \xi\right) \bar{\psi}(x) d x \\
& =(2 \pi)^{-n} \int \hat{\varphi}(\xi) \overline{\int e^{-i x \cdot \xi} \psi(x) d x} d \xi \\
& =(2 \pi)^{-n} \int \hat{\varphi}(\xi) \overline{\hat{\varphi}}(\xi) d \xi
\end{aligned}
$$

Here the integrals are absolutely convergent, justifying the exchange of orders.

Proposition 9.3. Fourier transform extends to an isomorphism

$$
\begin{equation*}
\mathcal{F}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right) \tag{9.6}
\end{equation*}
$$

Proof. Setting $\varphi=\psi$ in (9.5) shows that

$$
\begin{equation*}
\|\mathcal{F} \varphi\|_{L^{2}}=(2 \pi)^{n / 2}\|\varphi\|_{L^{2}} \tag{9.7}
\end{equation*}
$$

In particular this proves, given the known density of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ in $L^{2}\left(\mathbb{R}^{n}\right)$, that \mathcal{F} is an isomorphism, with inverse \mathcal{G}, as in (9.6).

For any $m \in \mathbb{R}$

$$
\langle x\rangle^{m} L^{2}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) ;\langle x\rangle^{-m} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

is a well-defined subspace. We define the Sobolev spaces on \mathbb{R}^{n} by, for $m \geq 0$

$$
\begin{equation*}
H^{m}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right) ; \hat{u}=\mathcal{F} u \in\langle\xi\rangle^{-m} L^{2}\left(\mathbb{R}^{n}\right)\right\} \tag{9.8}
\end{equation*}
$$

Thus $H^{m}\left(\mathbb{R}^{n}\right) \subset H^{m^{\prime}}\left(\mathbb{R}^{n}\right)$ if $m \geq m^{\prime}, H^{0}\left(\mathbb{R}^{n}\right)=L^{2}\left(\mathbb{R}^{n}\right)$.
Lemma 9.4. If $m \in \mathbb{N}$ is an integer, then

$$
\begin{equation*}
u \in H^{m}\left(\mathbb{R}^{n}\right) \Leftrightarrow D^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right) \forall|\alpha| \leq m \tag{9.9}
\end{equation*}
$$

Proof. By definition, $u \in H^{m}\left(\mathbb{R}^{n}\right)$ implies that $\langle\xi\rangle^{-m} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)$. Since $\widehat{D^{\alpha} u}=\xi^{\alpha} \hat{u}$ this certainly implies that $D^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right)$ for $|\alpha| \leq m$. Conversely if $D^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right)$ for all $|\alpha| \leq m$ then $\xi^{\alpha} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)$ for all $|\alpha| \leq m$ and since

$$
\langle\xi\rangle^{m} \leq C_{m} \sum_{|\alpha| \leq m}\left|\xi^{\alpha}\right|
$$

this in turn implies that $\langle\xi\rangle^{m} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)$.

Now that we have considered the Fourier transform of Schwartz test functions we can use the usual method, of duality, to extend it to tempered distributions. If we set $\eta=\overline{\hat{\psi}}$ then $\hat{\psi}=\bar{\eta}$ and $\psi=\mathcal{G} \hat{\psi}=\mathcal{G} \bar{\eta}$ so

$$
\begin{aligned}
\bar{\psi}(x)=(2 \pi)^{-n} \int e^{-i x \cdot \xi} \overline{\hat{\psi}}(\xi) & d \xi \\
& =(2 \pi)^{-n} \int e^{-i x \cdot \xi} \eta(\xi) d \xi=(2 \pi)^{-n} \hat{\eta}(x) .
\end{aligned}
$$

Substituting in (9.5) we find that

$$
\int \varphi \hat{\eta} d x=\int \hat{\varphi} \eta d \xi
$$

Now, recalling how we embed $\mathcal{S}\left(\mathbb{R}^{n}\right) \hookrightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ we see that

$$
\begin{equation*}
u_{\hat{\varphi}}(\eta)=u_{\varphi}(\hat{\eta}) \forall \eta \in \mathcal{S}\left(\mathbb{R}^{n}\right) . \tag{9.10}
\end{equation*}
$$

Definition 9.5. If $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ we define its Fourier transform by

$$
\begin{equation*}
\hat{u}(\varphi)=u(\hat{\varphi}) \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) . \tag{9.11}
\end{equation*}
$$

As a composite map, $\hat{u}=u \cdot \mathcal{F}$, with each term continuous, \hat{u} is continuous, i.e., $\hat{u} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.

Proposition 9.6. The definition (9.7) gives an isomorphism

$$
\mathcal{F}: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right), \mathcal{F} u=\hat{u}
$$

satisfying the identities

$$
\begin{equation*}
\widehat{D^{\alpha} u}=\xi^{\alpha} u, \widehat{x^{\alpha} u}=(-1)^{|\alpha|} D^{\alpha} \hat{u} . \tag{9.12}
\end{equation*}
$$

Proof. Since $\hat{u}=u \circ \mathcal{F}$ and \mathcal{G} is the 2 -sided inverse of \mathcal{F},

$$
\begin{equation*}
u=\hat{u} \circ \mathcal{G} \tag{9.13}
\end{equation*}
$$

gives the inverse to $\mathcal{F}: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, showing it to be an isomorphism. The identities (9.12) follow from their counterparts on $\mathcal{S}\left(\mathbb{R}^{n}\right)$:

$$
\begin{aligned}
\widehat{D^{\alpha} u}(\varphi) & =D^{\alpha} u(\hat{\varphi})=u\left((-1)^{|\alpha|} D^{\alpha} \hat{\varphi}\right) \\
& =u\left(\widehat{\xi^{\alpha} \varphi}\right)=\hat{u}\left(\xi^{\alpha} \varphi\right)=\xi^{\alpha} \hat{u}(\varphi) \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) .
\end{aligned}
$$

We can also define Sobolev spaces of negative order:

$$
\begin{equation*}
H^{m}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) ; \hat{u} \in\langle\xi\rangle^{-m} L^{2}\left(\mathbb{R}^{n}\right)\right\} \tag{9.14}
\end{equation*}
$$

Proposition 9.7. If $m \leq 0$ is an integer then $u \in H^{m}\left(\mathbb{R}^{n}\right)$ if and only if it can be written in the form

$$
\begin{equation*}
u=\sum_{|\alpha| \leq-m} D^{\alpha} v_{\alpha}, v_{\alpha} \in L^{2}\left(\mathbb{R}^{n}\right) \tag{9.15}
\end{equation*}
$$

Proof. If $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is of the form (9.15) then

$$
\begin{equation*}
\hat{u}=\sum_{|\alpha| \leq-m} \xi^{\alpha} \hat{v}_{\alpha} \text { with } \hat{v} \alpha \in L^{2}\left(\mathbb{R}^{n}\right) \tag{9.16}
\end{equation*}
$$

Thus $\langle\xi\rangle^{m} \hat{u}=\sum_{|\alpha| \leq-m} \xi^{\alpha}\langle\xi\rangle^{m} \hat{v}_{\alpha}$. Since all the factors $\xi^{\alpha}\langle\xi\rangle^{m}$ are bounded, each term here is in $L^{2}\left(\mathbb{R}^{n}\right)$, so $\langle\xi\rangle^{m} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)$ which is the definition, $u \in\langle\xi\rangle^{-m} L^{2}\left(\mathbb{R}^{n}\right)$.

Conversely, suppose $u \in H^{m}\left(\mathbb{R}^{n}\right)$, i.e., $\langle\xi\rangle^{m} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)$. The function

$$
\left(\sum_{|\alpha| \leq-m}\left|\xi^{\alpha}\right|\right) \cdot\langle\xi\rangle^{m} \in L^{2}\left(\mathbb{R}^{n}\right)(m<0)
$$

is bounded below by a positive constant. Thus

$$
v=\left(\sum_{|\alpha| \leq-m}\left|\xi^{\alpha}\right|\right)^{-1} \hat{u} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

Each of the functions $\hat{v}_{\alpha}=\operatorname{sgn}\left(\xi^{\alpha}\right) \hat{v} \in L^{2}\left(\mathbb{R}^{n}\right)$ so the identity (9.16), and hence (9.15), follows with these choices.

Proposition 9.8. Each of the Sobolev spaces $H^{m}\left(\mathbb{R}^{n}\right)$ is a Hilbert space with the norm and inner product

$$
\begin{align*}
\|u\|_{H^{m}} & =\left(\int_{\mathbb{R}^{n}}|\hat{u}(\xi)|^{2}\langle\xi\rangle^{2 m} d \xi\right)^{1 / 2} \tag{9.17}\\
\langle u, v\rangle & =\int_{\mathbb{R}^{n}} \hat{u}(\xi) \overline{\hat{v}(\xi)}\langle\xi\rangle^{2 m} d \xi
\end{align*}
$$

The Schwartz space $\mathcal{S}\left(\mathbb{R}^{n}\right) \hookrightarrow H^{m}\left(\mathbb{R}^{n}\right)$ is dense for each m and the pairing

$$
\begin{array}{r}
H^{m}\left(\mathbb{R}^{n}\right) \times H^{-m}\left(\mathbb{R}^{n}\right) \ni\left(u, u^{\prime}\right) \longmapsto \tag{9.18}\\
\quad\left(\left(u, u^{\prime}\right)\right)=\int_{\mathbb{R}^{n}} \hat{u^{\prime}}(\xi) \hat{u^{\prime}}(\cdot \xi) d \xi \in \mathbb{C}
\end{array}
$$

gives an identification $\left(H^{m}\left(\mathbb{R}^{n}\right)\right)^{\prime}=H^{-m}\left(\mathbb{R}^{n}\right)$.

Proof. The Hilbert space property follows essentially directly from the definition (9.14) since $\langle\xi\rangle^{-m} L^{2}\left(\mathbb{R}^{n}\right)$ is a Hilbert space with the norm (9.17). Similarly the density of \mathcal{S} in $H^{m}\left(\mathbb{R}^{n}\right)$ follows, since $\mathcal{S}\left(\mathbb{R}^{n}\right)$ dense in $L^{2}\left(\mathbb{R}^{n}\right)$ (Problem L11.P3) implies $\langle\xi\rangle^{-m} \mathcal{S}\left(\mathbb{R}^{n}\right)=\mathcal{S}\left(\mathbb{R}^{n}\right)$ is dense in $\langle\xi\rangle^{-m} L^{2}\left(\mathbb{R}^{n}\right)$ and so, since \mathcal{F} is an isomorphism in $\mathcal{S}\left(\mathbb{R}^{n}\right), \mathcal{S}\left(\mathbb{R}^{n}\right)$ is dense in $H^{m}\left(\mathbb{R}^{n}\right)$.

Finally observe that the pairing in (9.18) makes sense, since $\langle\xi\rangle^{-m} \hat{u}(\xi)$, $\langle\xi\rangle^{m} \hat{u}^{\prime}(\xi) \in L^{2}\left(\mathbb{R}^{n}\right)$ implies

$$
\hat{u}(\xi)) \hat{u}^{\prime}(-\xi) \in L^{1}\left(\mathbb{R}^{n}\right) .
$$

Furthermore, by the self-duality of $L^{2}\left(\mathbb{R}^{n}\right)$ each continuous linear functional

$$
U: H^{m}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}, U(u) \leq C\|u\|_{H^{m}}
$$

can be written uniquely in the form

$$
U(u)=\left(\left(u, u^{\prime}\right)\right) \text { for some } u^{\prime} \in H^{-m}\left(\mathbb{R}^{n}\right) .
$$

Notice that if $u, u^{\prime} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ then

$$
\left(\left(u, u^{\prime}\right)\right)=\int_{\mathbb{R}^{n}} u(x) u^{\prime}(x) d x
$$

This is always how we "pair" functions - it is the natural pairing on $L^{2}\left(\mathbb{R}^{n}\right)$. Thus in (9.18) what we have shown is that this pairing on test function

$$
\mathcal{S}\left(\mathbb{R}^{n}\right) \times \mathcal{S}\left(\mathbb{R}^{n}\right) \ni\left(u, u^{\prime}\right) \longmapsto\left(\left(u, u^{\prime}\right)\right)=\int_{\mathbb{R}^{n}} u(x) u^{\prime}(x) d x
$$

extends by continuity to $H^{m}\left(\mathbb{R}^{n}\right) \times H^{-m}\left(\mathbb{R}^{n}\right)$ (for each fixed m) when it identifies $H^{-m}\left(\mathbb{R}^{n}\right)$ as the dual of $H^{m}\left(\mathbb{R}^{n}\right)$. This was our 'picture' at the beginning.

For $m>0$ the spaces $H^{m}\left(\mathbb{R}^{n}\right)$ represents elements of $L^{2}\left(\mathbb{R}^{n}\right)$ that have " m " derivatives in $L^{2}\left(\mathbb{R}^{n}\right)$. For $m<0$ the elements are ?? of "up to $-m$ " derivatives of L^{2} functions. For integers this is precisely ??.

