7. Tempered distributions

A good first reference for distributions is [2], [4] gives a more exhaustive treatment.

The complete metric topology on $\mathcal{S}(\mathbb{R}^n)$ is described above. Next I want to try to convice you that elements of its dual space $\mathcal{S}'(\mathbb{R}^n)$, have enough of the properties of functions that we can work with them as 'generalized functions'.

First let me develop some notation. A differentiable function φ : $\mathbb{R}^n \to \mathbb{C}$ has partial derivatives which we have denoted $\partial \varphi / \partial x_j : \mathbb{R}^n \to \mathbb{C}$. For reasons that will become clear later, we put a $\sqrt{-1}$ into the definition and write

(7.1)
$$D_j \varphi = \frac{1}{i} \frac{\partial \varphi}{\partial x_j}$$

We say φ is once continuously differentiable if each of these $D_j\varphi$ is continuous. Then we defined k times continuous differentiability inductively by saying that φ and the $D_j\varphi$ are (k-1)-times continuously differentiable. For k = 2 this means that

$$D_j D_k \varphi$$
 are continuous for $j, k = 1, \cdots, n$.

Now, recall that, if continuous, these second derivatives are symmetric:

$$(7.2) D_j D_k \varphi = D_k D_j \varphi.$$

This means we can use a compact notation for higher derivatives. Put $\mathbb{N}_0 = \{0, 1, \ldots\}$; we call an element $\alpha \in \mathbb{N}_0^n$ a 'multi-index' and if φ is at least k times continuously differentiable, we set¹²

(7.3)
$$D^{\alpha}\varphi = \frac{1}{i^{|\alpha|}} \frac{\partial^{\alpha_1}}{\partial x_1} \cdots \frac{\partial^{\alpha_n}}{\partial x_n} \varphi$$
 whenever $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n \le k$.

Now we have *defined* the spaces.

(7.4)
$$\mathcal{C}_0^k(\mathbb{R}^n) = \left\{ \varphi : \mathbb{R}^n \to \mathbb{C} ; D^\alpha \varphi \in \mathcal{C}_0^0(\mathbb{R}^n) \ \forall \ |\alpha| \le k \right\} .$$

Notice the convention is that $D^{\alpha}\varphi$ is asserted to exist if it is required to be continuous! Using $\langle x \rangle = (1 + |x|^2)$ we defined

(7.5)
$$\langle x \rangle^{-k} \mathcal{C}_0^k(\mathbb{R}^n) = \left\{ \varphi : \mathbb{R}^n \to \mathbb{C} ; \langle x \rangle^k \varphi \in \mathcal{C}_0^k(\mathbb{R}^n) \right\} ,$$

and then our space of test functions is

$$\mathcal{S}(\mathbb{R}^n) = \bigcap_k \langle x \rangle^{-k} \mathcal{C}_0^k(\mathbb{R}^n) \,.$$

¹²Periodically there is the possibility of confusion between the two meanings of $|\alpha|$ but it seldom arises.

Thus,

(7.6)
$$\varphi \in \mathcal{S}(\mathbb{R}^n) \Leftrightarrow D^{\alpha}(\langle x \rangle^k \varphi) \in \mathcal{C}_0^0(\mathbb{R}^n) \ \forall \ |\alpha| \le k \text{ and all } k.$$

Lemma 7.1. The condition $\varphi \in \mathcal{S}(\mathbb{R}^n)$ can be written

$$\langle x \rangle^k D^{\alpha} \varphi \in \mathcal{C}^0_0(\mathbb{R}^n) \ \forall \ |\alpha| \le k \,, \, \forall \ k$$

Proof. We first check that

$$\varphi \in \mathcal{C}_0^0(\mathbb{R}^n), \ D_j(\langle x \rangle \varphi) \in \mathcal{C}_0^0(\mathbb{R}^n), \ j = 1, \cdots, n$$

$$\Leftrightarrow \varphi \in \mathcal{C}_0^0(\mathbb{R}^n), \ \langle x \rangle D_j \varphi \in \mathcal{C}_0^0(\mathbb{R}^n), \ j = 1, \cdots, n.$$

Since

$$D_j \langle x \rangle \varphi = \langle x \rangle D_j \varphi + (D_j \langle x \rangle) \varphi$$

and $D_j \langle x \rangle = \frac{1}{i} x_j \langle x \rangle^{-1}$ is a bounded continuous function, this is clear. Then consider the same thing for a larger k:

(7.7)
$$D^{\alpha} \langle x \rangle^{p} \varphi \in \mathcal{C}_{0}^{0}(\mathbb{R}^{n}) \ \forall \ |\alpha| = p \,, \ 0 \leq p \leq k$$
$$\Leftrightarrow \langle x \rangle^{p} D^{\alpha} \varphi \in \mathcal{C}_{0}^{0}(\mathbb{R}^{n}) \ \forall \ |\alpha| = p \,, \ 0 \leq p \leq k \,.$$

I leave you to check this as Problem 7.1.

Corollary 7.2. For any $k \in \mathbb{N}$ the norms

$$\|\langle x\rangle^k \varphi\|_{\mathcal{C}^k} \text{ and } \sum_{\substack{|\alpha| \leq k, \\ |\beta| \leq k}} \|x^{\alpha} D_x^{\beta} \varphi\|_{\infty}$$

are equivalent.

Proof. Any reasonable proof of (7.2) shows that the norms

$$\|\langle x \rangle^k \varphi\|_{\mathcal{C}^k}$$
 and $\sum_{|\beta| \le k} \|\langle x \rangle^k D^\beta \varphi\|_{\infty}$

are equivalent. Since there are positive constants such that

$$C_1\left(1+\sum_{|\alpha|\leq k}|x^{\alpha}|\right)\leq \langle x\rangle^k\leq C_2\left(1+\sum_{|\alpha|\leq k}|x^{\alpha}|\right)$$

the equivalent of the norms follows.

Proposition 7.3. A linear functional $u : \mathcal{S}(\mathbb{R}^n) \to \mathbb{C}$ is continuous if and only if there exist C, k such that

$$|u(\varphi)| \le C \sum_{\substack{|\alpha| \le k, \\ |\beta| \le k}} \sup_{\mathbb{R}^n} \left| x^{\alpha} D_x^{\beta} \varphi \right|.$$

Proof. This is just the equivalence of the norms, since we showed that $u \in \mathcal{S}'(\mathbb{R}^n)$ if and only if

$$|u(\varphi)| \le C ||\langle x \rangle^k \varphi||_{\mathcal{C}^k}$$

for some k.

Lemma 7.4. A linear map

$$T: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$$

is continuous if and only if for each k there exist C and j such that if $|\alpha| \leq k \text{ and } |\beta| \leq k$

(7.8)
$$\sup \left| x^{\alpha} D^{\beta} T \varphi \right| \leq C \sum_{|\alpha'| \leq j} \sup_{\mathbb{R}^n} \left| x^{\alpha'} D^{\beta'} \varphi \right| \ \forall \ \varphi \in \mathcal{S}(\mathbb{R}^n).$$

Proof. This is Problem 7.2.

Proof. This is Problem 7.2.

All this messing about with norms shows that

$$x_j: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n) \text{ and } D_j: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$$

are continuous.

So now we have some idea of what $u \in \mathcal{S}'(\mathbb{R}^n)$ means. Let's notice that $u \in \mathcal{S}'(\mathbb{R}^n)$ implies

 $x_j u \in \mathcal{S}'(\mathbb{R}^n) \ \forall \ j = 1, \cdots, n$ (7.9)

(7.10)
$$D_j u \in \mathcal{S}'(\mathbb{R}^n) \ \forall \ j = 1, \cdots, n$$

 $\varphi u \in \mathcal{S}'(\mathbb{R}^n) \ \forall \ \varphi \in \mathcal{S}(\mathbb{R}^n)$ (7.11)

where we have to *define* these things in a reasonable way. Remember that $u \in \mathcal{S}'(\mathbb{R}^n)$ is "supposed" to be like an integral against a "generalized function"

(7.12)
$$u(\psi) = \int_{\mathbb{R}^n} u(x)\psi(x) \, dx \, \forall \, \psi \in \mathcal{S}(\mathbb{R}^n).$$

Since it would be true if u were a function we define

(7.13)
$$x_j u(\psi) = u(x_j \psi) \; \forall \; \psi \in \mathcal{S}(\mathbb{R}^n)$$

Then we check that $x_i u \in \mathcal{S}'(\mathbb{R}^n)$:

$$|x_j u(\psi)| = |u(x_j \psi)|$$

$$\leq C \sum_{|\alpha| \leq k, \ |\beta| \leq k} \sup_{\mathbb{R}^n} |x^{\alpha} D^{\beta}(x_j \psi)|$$

$$\leq C' \sum_{|\alpha| \leq k+1, |\beta| \leq k} \sup_{\mathbb{R}^n} \left| x^{\alpha} D^{\beta} \psi \right| .$$

44

Similarly we can define the partial *derivatives* by using the standard integration by parts formula

(7.14)
$$\int_{\mathbb{R}^n} (D_j u)(x)\varphi(x) \, dx = -\int_{\mathbb{R}^n} u(x)(D_j\varphi(x)) \, dx$$

if $u \in \mathcal{C}_0^1(\mathbb{R}^n)$. Thus if $u \in \mathcal{S}'(\mathbb{R}^n)$ again we define

$$D_j u(\psi) = -u(D_j \psi) \ \forall \ \psi \in \mathcal{S}(\mathbb{R}^n).$$

Then it is clear that $D_i u \in \mathcal{S}'(\mathbb{R}^n)$.

Iterating these definition we find that D^{α} , for any multi-index α , defines a linear map

(7.15)
$$D^{\alpha}: \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$$

In general a linear differential operator with constant coefficients is a sum of such "monomials". For example Laplace's operator is

$$\Delta = -\frac{\partial^2}{\partial x_1^2} - \frac{\partial^2}{\partial x_2^2} - \dots - \frac{\partial^2}{\partial x_n^2} = D_1^2 + D_2^2 + \dots + D_n^2.$$

We will be interested in trying to solve differential equations such as

$$\Delta u = f \in \mathcal{S}'(\mathbb{R}^n) \,.$$

We can also multiply $u \in \mathcal{S}'(\mathbb{R}^n)$ by $\varphi \in \mathcal{S}(\mathbb{R}^n)$, simply defining

(7.16)
$$\varphi u(\psi) = u(\varphi \psi) \; \forall \; \psi \in \mathcal{S}(\mathbb{R}^n).$$

For this to make sense it suffices to check that

(7.17)
$$\sum_{\substack{|\alpha| \le k, \\ |\beta| \le k}} \sup_{\mathbb{R}^n} \left| x^{\alpha} D^{\beta}(\varphi \psi) \right| \le C \sum_{\substack{|\alpha| \le k, \\ |\beta| \le k}} \sup_{\mathbb{R}^n} \left| x^{\alpha} D^{\beta} \psi \right|.$$

This follows easily from Leibniz' formula.

Now, to start thinking of $u \in \mathcal{S}'(\mathbb{R}^n)$ as a generalized function we first define its *support*. Recall that

(7.18)
$$\operatorname{supp}(\psi) = \operatorname{clos} \left\{ x \in \mathbb{R}^n; \psi(x) \neq 0 \right\}$$

We can write this in another 'weak' way which is easier to generalize. Namely

(7.19)
$$p \notin \operatorname{supp}(u) \Leftrightarrow \exists \varphi \in \mathcal{S}(\mathbb{R}^n), \, \varphi(p) \neq 0, \, \varphi u = 0.$$

In fact this definition makes sense for any $u \in \mathcal{S}'(\mathbb{R}^n)$.

Lemma 7.5. The set $\operatorname{supp}(u)$ defined by (7.19) is a closed subset of \mathbb{R}^n and reduces to (7.18) if $u \in \mathcal{S}(\mathbb{R}^n)$.

Proof. The set defined by (7.19) is closed, since

(7.20)
$$\operatorname{supp}(u)^{\complement} = \{ p \in \mathbb{R}^n; \exists \varphi \in \mathcal{S}(\mathbb{R}^n), \varphi(p) \neq 0, \varphi u = 0 \}$$

is clearly open — the same φ works for nearby points. If $\psi \in \mathcal{S}(\mathbb{R}^n)$

is clearly open — the same φ works for nearby points. If $\psi \in \mathcal{S}(\mathbb{R}^n)$, we define $u_{\psi} \in \mathcal{S}'(\mathbb{R}^n)$, which we will again identify with ψ , by

(7.21)
$$u_{\psi}(\varphi) = \int \varphi(x)\psi(x) \, dx$$

Obviously $u_{\psi} = 0 \Longrightarrow \psi = 0$, simply set $\varphi = \overline{\psi}$ in (7.21). Thus the map

(7.22)
$$\mathcal{S}(\mathbb{R}^n) \ni \psi \longmapsto u_{\psi} \in \mathcal{S}'(\mathbb{R}^n)$$

is injective. We want to show that

(7.23)
$$\operatorname{supp}(u_{\psi}) = \operatorname{supp}(\psi)$$

on the left given by (7.19) and on the right by (7.18). We show first that

$$\operatorname{supp}(u_{\psi}) \subset \operatorname{supp}(\psi)$$

Thus, we need to see that $p \notin \operatorname{supp}(\psi) \Rightarrow p \notin \operatorname{supp}(u_{\psi})$. The first condition is that $\psi(x) = 0$ in a neighbourhood, U of p, hence there is a \mathcal{C}^{∞} function φ with support in U and $\varphi(p) \neq 0$. Then $\varphi \psi \equiv 0$. Conversely suppose $p \notin \operatorname{supp}(u_{\psi})$. Then there exists $\varphi \in \mathcal{S}(\mathbb{R}^n)$ with $\varphi(p) \neq 0$ and $\varphi u_{\psi} = 0$, i.e., $\varphi u_{\psi}(\eta) = 0 \forall \eta \in \mathcal{S}(\mathbb{R}^n)$. By the injectivity of $\mathcal{S}(\mathbb{R}^n) \hookrightarrow \mathcal{S}'(\mathbb{R}^n)$ this means $\varphi \psi = 0$, so $\psi \equiv 0$ in a neighborhood of p and $p \notin \operatorname{supp}(\psi)$.

Consider the simplest examples of distribution which are not functions, namely those with support at a given point p. The obvious one is the Dirac delta 'function'

(7.24)
$$\delta_p(\varphi) = \varphi(p) \; \forall \; \varphi \in \mathcal{S}(\mathbb{R}^n) \,.$$

We can make many more, because D^{α} is *local*

(7.25)
$$\operatorname{supp}(D^{\alpha}u) \subset \operatorname{supp}(u) \ \forall \ u \in \mathcal{S}'(\mathbb{R}^n).$$

Indeed, $p \notin \operatorname{supp}(u) \Rightarrow \exists \varphi \in \mathcal{S}(\mathbb{R}^n), \varphi u \equiv 0, \varphi(p) \neq 0$. Thus each of the distributions $D^{\alpha} \delta_p$ also has support contained in $\{p\}$. In fact none of them vanish, and they are all linearly independent.