7. Tempered distributions

A good first reference for distributions is [2], [4] gives a more exhaustive treatment.

The complete metric topology on $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is described above. Next I want to try to convice you that elements of its dual space $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, have enough of the properties of functions that we can work with them as 'generalized functions'.

First let me develop some notation. A differentiable function φ : $\mathbb{R}^{n} \rightarrow \mathbb{C}$ has partial derivatives which we have denoted $\partial \varphi / \partial x_{j}: \mathbb{R}^{n} \rightarrow$ \mathbb{C}. For reasons that will become clear later, we put a $\sqrt{-1}$ into the definition and write

$$
\begin{equation*}
D_{j} \varphi=\frac{1}{i} \frac{\partial \varphi}{\partial x_{j}} . \tag{7.1}
\end{equation*}
$$

We say φ is once continuously differentiable if each of these $D_{j} \varphi$ is continuous. Then we defined k times continuous differentiability inductively by saying that φ and the $D_{j} \varphi$ are $(k-1)$-times continuously differentiable. For $k=2$ this means that

$$
D_{j} D_{k} \varphi \text { are continuous for } j, k=1, \cdots, n
$$

Now, recall that, if continuous, these second derivatives are symmetric:

$$
\begin{equation*}
D_{j} D_{k} \varphi=D_{k} D_{j} \varphi \tag{7.2}
\end{equation*}
$$

This means we can use a compact notation for higher derivatives. Put $\mathbb{N}_{0}=\{0,1, \ldots\}$; we call an element $\alpha \in \mathbb{N}_{0}^{n}$ a 'multi-index' and if φ is at least k times continuously differentiable, we set ${ }^{12}$

$$
\begin{equation*}
D^{\alpha} \varphi=\frac{1}{i^{|\alpha|}} \frac{\partial^{\alpha_{1}}}{\partial x_{1}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x_{n}} \varphi \text { whenever }|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n} \leq k . \tag{7.3}
\end{equation*}
$$

Now we have defined the spaces.

$$
\begin{equation*}
\mathcal{C}_{0}^{k}\left(\mathbb{R}^{n}\right)=\left\{\varphi: \mathbb{R}^{n} \rightarrow \mathbb{C} ; D^{\alpha} \varphi \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right) \forall|\alpha| \leq k\right\} \tag{7.4}
\end{equation*}
$$

Notice the convention is that $D^{\alpha} \varphi$ is asserted to exist if it is required to be continuous! Using $\langle x\rangle=\left(1+|x|^{2}\right)$ we defined

$$
\begin{equation*}
\langle x\rangle^{-k} \mathcal{C}_{0}^{k}\left(\mathbb{R}^{n}\right)=\left\{\varphi: \mathbb{R}^{n} \rightarrow \mathbb{C} ;\langle x\rangle^{k} \varphi \in \mathcal{C}_{0}^{k}\left(\mathbb{R}^{n}\right)\right\} \tag{7.5}
\end{equation*}
$$

and then our space of test functions is

$$
\mathcal{S}\left(\mathbb{R}^{n}\right)=\bigcap_{k}\langle x\rangle^{-k} \mathcal{C}_{0}^{k}\left(\mathbb{R}^{n}\right)
$$

[^0]Thus,

$$
\begin{equation*}
\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \Leftrightarrow D^{\alpha}\left(\langle x\rangle^{k} \varphi\right) \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right) \forall|\alpha| \leq k \text { and all } k . \tag{7.6}
\end{equation*}
$$

Lemma 7.1. The condition $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ can be written

$$
\langle x\rangle^{k} D^{\alpha} \varphi \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right) \forall|\alpha| \leq k, \forall k
$$

Proof. We first check that

$$
\begin{array}{r}
\varphi \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right), D_{j}(\langle x\rangle \varphi) \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right), j=1, \cdots, n \\
\Leftrightarrow \varphi \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right),\langle x\rangle D_{j} \varphi \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right), j=1, \cdots, n .
\end{array}
$$

Since

$$
D_{j}\langle x\rangle \varphi=\langle x\rangle D_{j} \varphi+\left(D_{j}\langle x\rangle\right) \varphi
$$

and $D_{j}\langle x\rangle=\frac{1}{i} x_{j}\langle x\rangle^{-1}$ is a bounded continuous function, this is clear. Then consider the same thing for a larger k :

$$
\begin{align*}
& D^{\alpha}\langle x\rangle^{p} \varphi \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right) \forall|\alpha|=p, 0 \leq p \leq k \tag{7.7}\\
\Leftrightarrow & \langle x\rangle^{p} D^{\alpha} \varphi \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right) \forall|\alpha|=p, 0 \leq p \leq k
\end{align*}
$$

I leave you to check this as Problem 7.1.
Corollary 7.2. For any $k \in \mathbb{N}$ the norms

$$
\left\|\langle x\rangle^{k} \varphi\right\|_{\mathcal{C}^{k}} \text { and } \sum_{\substack{\alpha|\leq k,|\beta| \leq k}}\left\|x^{\alpha} D_{x}^{\beta} \varphi\right\|_{\infty}
$$

are equivalent.
Proof. Any reasonable proof of (7.2) shows that the norms

$$
\left\|\langle x\rangle^{k} \varphi\right\|_{\mathcal{C}^{k}} \text { and } \sum_{|\beta| \leq k}\left\|\langle x\rangle^{k} D^{\beta} \varphi\right\|_{\infty}
$$

are equivalent. Since there are positive constants such that

$$
C_{1}\left(1+\sum_{|\alpha| \leq k}\left|x^{\alpha}\right|\right) \leq\langle x\rangle^{k} \leq C_{2}\left(1+\sum_{|\alpha| \leq k}\left|x^{\alpha}\right|\right)
$$

the equivalent of the norms follows.

Proposition 7.3. A linear functional $u: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ is continuous if and only if there exist C, k such that

$$
|u(\varphi)| \leq C \sum_{\substack{|\alpha| \leq k,|\beta| \leq k}} \sup _{\mathbb{R}^{n}}\left|x^{\alpha} D_{x}^{\beta} \varphi\right|
$$

Proof. This is just the equivalence of the norms, since we showed that $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ if and only if

$$
|u(\varphi)| \leq C\left\|\langle x\rangle^{k} \varphi\right\|_{\mathcal{C}^{k}}
$$

for some k.

Lemma 7.4. A linear map

$$
T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

is continuous if and only if for each k there exist C and j such that if $|\alpha| \leq k$ and $|\beta| \leq k$

$$
\begin{equation*}
\sup \left|x^{\alpha} D^{\beta} T \varphi\right| \leq C \sum_{\left|\alpha^{\prime}\right| \leq j,\left|\beta^{\prime}\right| \leq j} \sup _{\mathbb{R}^{n}}\left|x^{\alpha^{\prime}} D^{\beta^{\prime}} \varphi\right| \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) . \tag{7.8}
\end{equation*}
$$

Proof. This is Problem 7.2.
All this messing about with norms shows that

$$
x_{j}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right) \text { and } D_{j}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

are continuous.
So now we have some idea of what $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ means. Let's notice that $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ implies

$$
\left.\begin{array}{rl}
x_{j} u & \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \forall j \\
D_{j} u & \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \forall j=1, \cdots, n \\
\varphi u & \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \forall \varphi \tag{7.11}
\end{array}\right) \in \mathcal{S}\left(\mathbb{R}^{n}\right) \text { }
$$

where we have to define these things in a reasonable way. Remember that $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is "supposed" to be like an integral against a "generalized function"

$$
\begin{equation*}
u(\psi)=\int_{\mathbb{R}^{n}} u(x) \psi(x) d x \forall \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{7.12}
\end{equation*}
$$

Since it would be true if u were a function we define

$$
\begin{equation*}
x_{j} u(\psi)=u\left(x_{j} \psi\right) \forall \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right) . \tag{7.13}
\end{equation*}
$$

Then we check that $x_{j} u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$:

$$
\begin{aligned}
\left|x_{j} u(\psi)\right| & =\left|u\left(x_{j} \psi\right)\right| \\
& \leq C \sum_{|\alpha| \leq k,|\beta| \leq k} \sup _{\mathbb{R}^{n}}\left|x^{\alpha} D^{\beta}\left(x_{j} \psi\right)\right| \\
& \leq C^{\prime} \sum_{|\alpha| \leq k+1,|\beta| \leq k} \sup _{\mathbb{R}^{n}}\left|x^{\alpha} D^{\beta} \psi\right| .
\end{aligned}
$$

Similarly we can define the partial derivatives by using the standard integration by parts formula

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(D_{j} u\right)(x) \varphi(x) d x=-\int_{\mathbb{R}^{n}} u(x)\left(D_{j} \varphi(x)\right) d x \tag{7.14}
\end{equation*}
$$

if $u \in \mathcal{C}_{0}^{1}\left(\mathbb{R}^{n}\right)$. Thus if $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ again we define

$$
D_{j} u(\psi)=-u\left(D_{j} \psi\right) \forall \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Then it is clear that $D_{j} u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
Iterating these definition we find that D^{α}, for any multi-index α, defines a linear map

$$
\begin{equation*}
D^{\alpha}: \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \tag{7.15}
\end{equation*}
$$

In general a linear differential operator with constant coefficients is a sum of such "monomials". For example Laplace's operator is

$$
\Delta=-\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}-\cdots-\frac{\partial^{2}}{\partial x_{n}^{2}}=D_{1}^{2}+D_{2}^{2}+\cdots+D_{n}^{2}
$$

We will be interested in trying to solve differential equations such as

$$
\Delta u=f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)
$$

We can also multiply $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ by $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, simply defining

$$
\begin{equation*}
\varphi u(\psi)=u(\varphi \psi) \forall \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{7.16}
\end{equation*}
$$

For this to make sense it suffices to check that

$$
\begin{equation*}
\sum_{\substack{|\alpha| \leq k,|\beta| \leq k}} \sup _{\mathbb{R}^{n}}\left|x^{\alpha} D^{\beta}(\varphi \psi)\right| \leq C \sum_{\substack{|\alpha| \leq k,|\beta| \leq k}} \sup _{\mathbb{R}^{n}}\left|x^{\alpha} D^{\beta} \psi\right| . \tag{7.17}
\end{equation*}
$$

This follows easily from Leibniz' formula.
Now, to start thinking of $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ as a generalized function we first define its support. Recall that

$$
\begin{equation*}
\operatorname{supp}(\psi)=\operatorname{clos}\left\{x \in \mathbb{R}^{n} ; \psi(x) \neq 0\right\} \tag{7.18}
\end{equation*}
$$

We can write this in another 'weak' way which is easier to generalize. Namely

$$
\begin{equation*}
p \notin \operatorname{supp}(u) \Leftrightarrow \exists \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right), \varphi(p) \neq 0, \varphi u=0 \tag{7.19}
\end{equation*}
$$

In fact this definition makes sense for any $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
Lemma 7.5. The set $\operatorname{supp}(u)$ defined by (7.19) is a closed subset of \mathbb{R}^{n} and reduces to (7.18) if $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

Proof. The set defined by (7.19) is closed, since

$$
\begin{equation*}
\operatorname{supp}(u)^{\complement}=\left\{p \in \mathbb{R}^{n} ; \exists \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right), \varphi(p) \neq 0, \varphi u=0\right\} \tag{7.20}
\end{equation*}
$$

is clearly open - the same φ works for nearby points. If $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ we define $u_{\psi} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, which we will again identify with ψ, by

$$
\begin{equation*}
u_{\psi}(\varphi)=\int \varphi(x) \psi(x) d x \tag{7.21}
\end{equation*}
$$

Obviously $u_{\psi}=0 \Longrightarrow \psi=0$, simply set $\varphi=\bar{\psi}$ in (7.21). Thus the map

$$
\begin{equation*}
\mathcal{S}\left(\mathbb{R}^{n}\right) \ni \psi \longmapsto u_{\psi} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \tag{7.22}
\end{equation*}
$$

is injective. We want to show that

$$
\begin{equation*}
\operatorname{supp}\left(u_{\psi}\right)=\operatorname{supp}(\psi) \tag{7.23}
\end{equation*}
$$

on the left given by (7.19) and on the right by (7.18). We show first that

$$
\operatorname{supp}\left(u_{\psi}\right) \subset \operatorname{supp}(\psi)
$$

Thus, we need to see that $p \notin \operatorname{supp}(\psi) \Rightarrow p \notin \operatorname{supp}\left(u_{\psi}\right)$. The first condition is that $\psi(x)=0$ in a neighbourhood, U of p, hence there is a \mathcal{C}^{∞} function φ with support in U and $\varphi(p) \neq 0$. Then $\varphi \psi \equiv 0$. Conversely suppose $p \notin \operatorname{supp}\left(u_{\psi}\right)$. Then there exists $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $\varphi(p) \neq 0$ and $\varphi u_{\psi}=0$, i.e., $\varphi u_{\psi}(\eta)=0 \forall \eta \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. By the injectivity of $\mathcal{S}\left(\mathbb{R}^{n}\right) \hookrightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ this means $\varphi \psi=0$, so $\psi \equiv 0$ in a neighborhood of p and $p \notin \operatorname{supp}(\psi)$.

Consider the simplest examples of distribution which are not functions, namely those with support at a given point p. The obvious one is the Dirac delta 'function'

$$
\begin{equation*}
\delta_{p}(\varphi)=\varphi(p) \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \tag{7.24}
\end{equation*}
$$

We can make many more, because D^{α} is local

$$
\begin{equation*}
\operatorname{supp}\left(D^{\alpha} u\right) \subset \operatorname{supp}(u) \forall u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \tag{7.25}
\end{equation*}
$$

Indeed, $p \notin \operatorname{supp}(u) \Rightarrow \exists \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right), \varphi u \equiv 0, \varphi(p) \neq 0$. Thus each of the distributions $D^{\alpha} \delta_{p}$ also has support contained in $\{p\}$. In fact none of them vanish, and they are all linearly independent.

[^0]: ${ }^{12}$ Periodically there is the possibility of confusion between the two meanings of $|\alpha|$ but it seldom arises.

