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6. Test functions 

So far we have largely been dealing with integration. One thing we 
have seen is that, by considering dual spaces, we can think of functions 
as functionals. Let me briefly review this idea. 

Consider the unit ball in Rn ,

n


B = {x ≤ Rn ; |x| ∼ 1} . 

I take the closed unit ball because I want to deal with a compact metric 
space. We have dealt with several Banach spaces of functions on Bn , 
for example 

C(Bn) = u : Bn ∩ C ; u continuous 

2L2(Bn) = u : Bn ∩ C; Borel measurable with |u| dx < ⊂ . 

Here, as always below, dx is Lebesgue measure and functions are iden
tified if they are equal almost everywhere. 

Since Bn is compact we have a natural inclusion 

(6.1) C(Bn) δ∩ L2(Bn) .


This is also a topological inclusion, i.e., is a bounded linear map, since


(6.2) �u�L2 ∼ C�u||� 

where C2 is the volume of the unit ball. 
In general if we have such a set up then 

Lemma 6.1. If V δ∩ U is a subspace with a stronger norm, 

���U ∼ C���V � � ≤ V 

then restriction gives a continuous linear map 

L = L|V ≤ V ≤ , � ̃(6.3) U ≤ ∩ V ≤, U ≤ � L ∈−∩ ˜ L�V � ∼ C�L�U � . 

If V is dense in U then the map (6.3) is injective. 

Proof. By definition of the dual norm 
� ̃ �

� ̃L�V � = sup 
� L(v)

� ; �v�V ∼ 1 , v ≤ V 

� ̃ �

∼ sup 
� L(v)

� ; �v�U ∼ C , v ≤ V 

∼ sup {|L(u)| ; �u�U ∼ C , u ≤ U} 

= C�L�U � . 

If V ⊃ U is dense then the vanishing of L : U ∩ C on V implies its 
vanishing on U . 
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Going back to the particular case (6.1) we do indeed get a continuous 
map between the dual spaces 

L2(Bn) ∃= (L2(Bn))≤ ∩ (C(Bn))≤ = M(Bn) . 

Here we use the Riesz representation theorem and duality for Hilbert 
spaces. The map use here is supposed to be linear not antilinear, i.e., 

(6.4) L2(Bn) � g ∈−∩ ·g dx ≤ (C(Bn))≤ . 

So the idea is to make the space of ‘test functions’ as small as reasonably 
possible, while still retaining density in reasonable spaces. 

Recall that a function u : Rn ∩ C is differentiable at x ≤ Rn if there 
exists a ≤ Cn such that 

(6.5) |u(x) − u(x) − a · (x − x)| = o(|x − x|) . 

The ‘little oh’ notation here means that given ϕ > 0 there exists � > 0 
s.t. 

|x − x| < � ≥ |u(x) − u(x) − a(x − x)| < ϕ |x − x| . 

The coefficients of a = (a1, . . . , an) are the partial derivations of u at 
x, 

�u 
ai = (x)

�xj 

since 

u(x + tei) − u(x)
(6.6) ai = lim , 

t�0 t 

ei = (0, . . . , 1, 0, . . . , 0) being the ith basis vector. The function u is 
said to be continuously differentiable on Rn if it is differentiable at each 
point x ≤ Rn and each of the n partial derivatives are continuous, 

�u 
(6.7) : Rn ∩ C . 

�xj 

Definition 6.2. Let C0
1(Rn) be the subspace of C0(R

n) = C0
0(Rn) such 

�u that each element u ≤ C0
1(Rn) is continuously differentiable and 

�xj 
≤ 

C0(R
n), j = 1, . . . , n. 

Proposition 6.3. The function 
n 

� �u 
�u�C1 = �u�� + � ��

�x1i=1 

is a norm on C0
1(Rn) with respect to which it is a Banach space. 
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Proof. That � �C1 is a norm follows from the properties of � ��. Namely 
�u�C1 = 0 certainly implies u = 0, �au�C1 = |a| �u�C1 and the triangle 
inequality follows from the same inequality for � ��. 

1
0(R

n) follows from Similarly, the main part of the completeness of C
0
0(R

n). 1
0(R

n)the completeness of C If {un} is a Cauchy sequence in C
then un and the �un 

�xj 

0
0(R

nare Cauchy in C ). It follows that there are 
limits of these sequences, 

�un 0
0(R

n) .∩ v , ∩ vj ≤ Cun 
�xj 

However we do have to check that v is continuously differentiable and 
that �v = vj.�xj 

One way to do this is to use the Fundamental Theorem of Calculus 
in each variable. Thus 

� t �un 
un(x + tei) = (x + sei) ds + un(x) . 

�xj0 

As n ∩ ⊂ all terms converge and so, by the continuity of the integral, 
� t 

u(x + tei) = vj(x + sei) ds + u(x) . 
0 

This shows that the limit in (6.6) exists, so vi(x) is the partial deriva
tion of u with respect to xi. It remains only to show that u is indeed 
differentiable at each point and I leave this to you in Problem 17. 

So, almost by definition, we have an example of Lemma 6.1, 
1
0(R

n) δ∩ C0
0(R

n).C


It is in fact dense but I will not bother showing this (yet). So we know 
that 

0
0(R

n))≤ ∩ (C1
0(R

n))≤(C

and we expect it to be injective. Thus there are more functionals on

1
0(R

n) including things that are ‘more singular than measures’. 
An example is related to the Dirac delta 

0
0(R

n) ,�(x)(u) = u(x) , u ≤ C

namely 
�u 

(Rn) � u ∈−∩1
0C (x) ≤ C . 

�xj 

This is clearly a continuous linear functional which it is only just to 
denote � �(x).

�xj 

Of course, why stop at one derivative? 
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1Definition 6.4. The space C0 
k(Rn) ⊃ C0 (R

n) k → 1 is defined induc

tively by requiring that 
�u 

≤ C0 
k−1(Rn) , j = 1, . . . , n . 

�xj 

The norm on C0 
k (Rn) is taken to be 

n 
� �u 

(6.8) �u�Ck = �u�Ck−1 + � �Ck−1 . 
�xjj=1 

These are all Banach spaces, since if {un} is Cauchy in C0 
k (Rn), it is 

Cauchy and hence convergent in Ck−1(Rn), as is �un/�xj , j = 1, . . . , n−0 
1. Furthermore the limits of the �un/�xj are the derivatives of the limits 
by Proposition 6.3. 

This gives us a sequence of spaces getting ‘smoother and smoother’ 
1 kC0

0(Rn) ∀ C0 (R
n) ∀ · · · ∀ C0 (R

n) ∀ · · · , 

with norms getting larger and larger. The duals can also be expected 
to get larger and larger as k increases. 

As well as looking at functions getting smoother and smoother, we 
need to think about ‘infinity’, since Rn is not compact. Observe that 
an element g ≤ L1(Rn) (with respect to Lebesgue measure by default) 

kdefines a functional on C0
0(Rn) — and hence all the C0 (R

n)s. However a 
function such as the constant function 1 is not integrable on Rn . Since 
we certainly want to talk about this, and polynomials, we consider a 
second condition of smallness at infinity. Let us set 

(6.9) ∞x⇒ = (1 + |x|2)1/2 

a function which is the size of |x| for |x| large, but has the virtue of 
being smooth10 

Definition 6.5. For any k, l ≤ N = {1, 2, · · · } set 
k 

� 
k k∞x⇒ −lC0 (R

n) = u ≤ C0 (R
n) ; u = ∞x⇒ −l v , v ≤ C0 (R

n) 
� 

, 

with norm, �u�k,l = �v�Ck , v = ∞x⇒lu. 

kNotice that the definition just says that u = ∞x⇒−lv, with v ≤ C0 (R
n). 

It follows immediately that ∞x⇒−lC0 
k(Rn) is a Banach space with this 

norm. 

Definition 6.6. Schwartz’ space 11 of test functions on Rn is 
kS(Rn) = u : Rn ∩ C; u ≤ ∞x⇒ −lC0 (R

n) for all k and l ≤ N 
� 

. 

10
See Problem 18.


11
Laurent Schwartz – this one with a ‘t’.
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It is not immediately apparent that this space is non-empty (well 0 
is in there but...); that 

2exp(− |x| ) ≤ S(Rn) 

is Problem 19. There are lots of other functions in there as we shall 
see. 

Schwartz’ idea is that the dual of S(Rn) should contain all the ‘in
teresting’ objects, at least those of ‘polynomial growth’. The problem 
is that we do not have a good norm on S(Rn). Rather we have a lot of 
them. Observe that 

−l� k�k∞x⇒ −lC0 (R
n) ⊃ ∞x⇒ C0 (R

n) if l → l≤ and k → k≤ . 

Thus we see that as a linear space 

k(6.10)	 S(Rn) = ∞x⇒ −kC0 (R
n). 

k 

Since these spaces are getting smaller, we have a countably infinite 
number of norms. For this reason S(Rn) is called a countably normed 
space. 

Proposition 6.7. For u ≤ S(Rn), set 

(6.11)	 �u�(k) = �∞x⇒ k u�Ck 

and define 

(6.12) d(u, v) = 
� 

2−k �u − v�(k) 
,

1 + �u − v�(k)k=0 

then d is a distance function in S(Rn) with respect to which it is a 
complete metric space. 

Proof. The series in (6.12) certainly converges, since 

�u − v�(k) 
∼ 1. 

1 + �u − v�(k) 

The first two conditions on a metric are clear, 

d(u, v) = 0 ≥ �u − v�C0 = 0 ≥ u = v, 

and symmetry is immediate. The triangle inequality is perhaps more 
mysterious! 

Certainly it is enough to show that 

�u − v� 
(6.13)	 d̃(u, v) = 

1 + �u − v� 
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is a metric on any normed space, since then we may sum over k. Thus 
we consider 

�u − v� �v − w� 
+ 

1 + �u − v� 1 + �v − w� 
�u − v�(1 + �v − w�) + �v − w�(1 + �u − v�) 

= . 
(1 + �u − v�)(1 + �v − w�) 

Comparing this to d̃(v, w) we must show that 

(1 + �u − v�)(1 + �v − w�)�u − w� 

∼ (�u − v�(1 + �v − w�) + �v − w�(1 + �u − v�))(1 + �u − w�). 

Starting from the LHS and using the triangle inequality, 

LHS ∼ �u − w� + (�u − v� + �v − w� + �u − v��v − w�)�u − w�


∼ (�u − v� + �v − w� + �u − v��v − w�)(1 + �u − w�)


∼ RHS.


Thus, d is a metric. 
Suppose un is a Cauchy sequence. Thus, d(un, um) ∩ 0 as n, m ∩ 

⊂. In particular, given 

ϕ > 0 � N s.t. n, m > N implies 

d(un, um) < ϕ2−k � n, m > N. 

The terms in (6.12) are all positive, so this implies 

�un − um�(k) 
< ϕ � n, m > N. 

1 + �un − um�(k) 

If ϕ < 1/2 this in turn implies that 

�un − um�(k) < 2ϕ, 

so the sequence is Cauchy in ∞x⇒−k C0 
k (Rn) for each k. From the com

pleteness of these spaces it follows that un ∩ u in ∞x⇒−k C0 
k(Rn)j for 

each k. Given ϕ > 0 choose k so large that 2−k < ϕ/2. Then � N s.t. 
n > N 

≥ �u − un�(j) < ϕ/2 n > N, j ∼ k. 



� 
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Hence 

d(un, u) = 2−j �u − un�(j) 

1 + �u − un�(j)
j�k 

+	 2−j �u − un�(j) 

1 + �u − un�(j)
j>k 

∼ ϕ/4 + 2−k < ϕ. 

This un ∩ u in S(Rn).	 � 

As well as the Schwartz space, S(Rn), of functions of rapid decrease 
with all derivatives, there is a smaller ‘standard’ space of test functions, 
namely 

(6.14) C�(Rn) = {u ≤ S(Rn); supp(u) 
 Rn} ,c 

the space of smooth functions of compact support. Again, it is not 
quite obvious that this has any non-trivial elements, but it does as 
we shall see. If we fix a compact subset of Rn and look at functions 
with support in that set, for instance the closed ball of radius R > 0, 
then we get a closed subspace of S(Rn), hence a complete metric space. 
One ‘problem’ with C�(Rn) is that it does not have a complete metric c 
topology which restricts to this topology on the subsets. Rather we 
must use an inductive limit procedure to get a decent topology. 

Just to show that this is not really hard, I will discuss it briefly 
here, but it is not used in the sequel. In particular I will not do this 
in the lectures themselves. By definition our space C�(Rn) (denoted c 
traditionally as D(Rn)) is a countable union of subspaces 
(6.15) 
C�(Rn) = Ċ�(B(n)), Ċ�(B(n)) = {u ≤ S(Rn); u = 0 in |x| > n}.c c c


n→N


Consider 
(6.16) 
T = {U ⊃ C�(Rn); U � Ċ (B(n)) is open in Ċ�(B(n)) for each n}.c c


�(Rn)
This is a topology on C – contains the empty set and the whole c 
space and is closed under finite intersections and arbitrary unions – 

˙simply because the same is true for the open sets in C�(B(n)) for each 
n. This is in fact the inductive limit topology. One obvious question 
is:- what does it mean for a linear functional u : C�(Rn) −∩ C to be c 
continuous? This just means that u−1(O) is open for each open set in C. 
Directly from the definition this in turn means that u−1(O) �Ċ�(B(n)) 
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should be open in Ċ�(B(n)) for each n. This however just means that, 
restricted to each of these subspaces u is continuous. If you now go 
forwards to Lemma 7.3 you can see what this means; see Problem 74. 

Of course there is a lot more to be said about these spaces; you can 
find plenty of it in the references. 


