5. Hilbert space

We have shown that $L^{p}(X, \mu)$ is a Banach space - a complete normed space. I shall next discuss the class of Hilbert spaces, a special class of Banach spaces, of which $L^{2}(X, \mu)$ is a standard example, in which the norm arises from an inner product, just as it does in Euclidean space.

An inner product on a vector space V over \mathbb{C} (one can do the real case too, not much changes) is a sesquilinear form

$$
V \times V \rightarrow \mathbb{C}
$$

written (u, v), if $u, v \in V$. The 'sesqui-' part is just linearity in the first variable

$$
\begin{equation*}
\left(a_{1} u_{1}+a_{2} u_{2}, v\right)=a_{1}\left(u_{1}, v\right)+a_{2}\left(u_{2}, v\right), \tag{5.1}
\end{equation*}
$$

anti-linearly in the second

$$
\begin{equation*}
\left(u, a_{1} v_{1}+a_{2} v_{2}\right)=\bar{a}_{1}\left(u, v_{1}\right)+\bar{a}_{2}\left(u, v_{2}\right) \tag{5.2}
\end{equation*}
$$

and the conjugacy condition

$$
\begin{equation*}
(u, v)=\overline{(v, u)} . \tag{5.3}
\end{equation*}
$$

Notice that (5.2) follows from (5.1) and (5.3). If we assume in addition the positivity condition ${ }^{8}$

$$
\begin{equation*}
(u, u) \geq 0, \quad(u, u)=0 \Rightarrow u=0 \tag{5.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\|u\|=(u, u)^{1 / 2} \tag{5.5}
\end{equation*}
$$

is a norm on V, as we shall see.
Suppose that $u, v \in V$ have $\|u\|=\|v\|=1$. Then $(u, v)=e^{i \theta}|(u, v)|$ for some $\theta \in \mathbb{R}$. By choice of $\theta, e^{-i \theta}(u, v)=|(u, v)|$ is real, so expanding out using linearity for $s \in \mathbb{R}$,

$$
\begin{aligned}
0 \leq\left(e^{-i \theta} u\right. & \left.-s v, e^{-i \theta} u-s v\right) \\
& =\|u\|^{2}-2 s \operatorname{Re} e^{-i \theta}(u, v)+s^{2}\|v\|^{2}=1-2 s|(u, v)|+s^{2}
\end{aligned}
$$

The minimum of this occurs when $s=|(u, v)|$ and this is negative unless $|(u, v)| \leq 1$. Using linearity, and checking the trivial cases $u=$ or $v=0$ shows that

$$
\begin{equation*}
|(u, v)| \leq\|u\|\|v\|, \forall u, v \in V \tag{5.6}
\end{equation*}
$$

This is called Schwarz ${ }^{9}$ inequality.

[^0]Using Schwarz' inequality

$$
\begin{aligned}
\|u+v\|^{2} & =\|u\|^{2}+(u, v)+(v, u)+\|v\|^{2} \\
& \leq(\|u\|+\|v\|)^{2} \\
& \Longrightarrow\|u+v\| \leq\|u\|+\|v\| \forall u, v \in V
\end{aligned}
$$

which is the triangle inequality.
Definition 5.1. A Hilbert space is a vector space V with an inner product satisfying (5.1) - (5.4) which is complete as a normed space (i.e., is a Banach space).

Thus we have already shown $L^{2}(X, \mu)$ to be a Hilbert space for any positive measure μ. The inner product is

$$
\begin{equation*}
(f, g)=\int_{X} f \bar{g} d \mu \tag{5.7}
\end{equation*}
$$

since then (5.3) gives $\|f\|_{2}$.
Another important identity valid in any inner product spaces is the parallelogram law:

$$
\begin{equation*}
\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2} \tag{5.8}
\end{equation*}
$$

This can be used to prove the basic 'existence theorem' in Hilbert space theory.

Lemma 5.2. Let $C \subset H$, in a Hilbert space, be closed and convex (i.e., $s u+(1-s) v \in C$ if $u, v \in C$ and $0<s<1)$. Then C contains a unique element of smallest norm.
Proof. We can certainly choose a sequence $u_{n} \in C$ such that

$$
\left\|u_{n}\right\| \rightarrow \delta=\inf \{\|v\| ; v \in C\}
$$

By the parallelogram law,

$$
\begin{aligned}
\left\|u_{n}-u_{m}\right\|^{2} & =2\left\|u_{n}\right\|^{2}+2\left\|u_{m}\right\|^{2}-\left\|u_{n}+u_{m}\right\|^{2} \\
& \leq 2\left(\left\|u_{n}\right\|^{2}+\left\|u_{m}\right\|^{2}\right)-4 \delta^{2}
\end{aligned}
$$

where we use the fact that $\left(u_{n}+u_{m}\right) / 2 \in C$ so must have norm at least δ. Thus $\left\{u_{n}\right\}$ is a Cauchy sequence, hence convergent by the assumed completeness of H. Thus $\lim u_{n}=u \in C$ (since it is assumed closed) and by the triangle inequality

$$
\mid\left\|u_{n}\right\|-\|u\|\|\leq\| u_{n}-u \| \rightarrow 0
$$

So $\|u\|=\delta$. Uniqueness of u follows again from the parallelogram law which shows that if $\left\|u^{\prime}\right\|=\delta$ then

$$
\left\|u-u^{\prime}\right\| \leq 2 \delta^{2}-4\left\|\left(u+u^{\prime}\right) / 2\right\|^{2} \leq 0
$$

The fundamental fact about a Hilbert space is that each element $v \in H$ defines a continuous linear functional by

$$
H \ni u \longmapsto(u, v) \in \mathbb{C}
$$

and conversely every continuous linear functional arises this way. This is also called the Riesz representation theorem.

Proposition 5.3. If $L: H \rightarrow \mathbb{C}$ is a continuous linear functional on a Hilbert space then this is a unique element $v \in H$ such that

$$
\begin{equation*}
L u=(u, v) \forall u \in H, \tag{5.9}
\end{equation*}
$$

Proof. Consider the linear space

$$
M=\{u \in H ; L u=0\}
$$

the null space of L, a continuous linear functional on H. By the assumed continuity, M is closed. We can suppose that L is not identically zero (since then $v=0$ in (5.9)). Thus there exists $w \notin M$. Consider

$$
w+M=\{v \in H ; v=w+u, u \in M\}
$$

This is a closed convex subset of H. Applying Lemma 5.2 it has a unique smallest element, $v \in w+M$. Since v minimizes the norm on $w+M$,

$$
\|v+s u\|^{2}=\|v\|^{2}+2 \operatorname{Re}(s u, v)+\|s\|^{2}\|u\|^{2}
$$

is stationary at $s=0$. Thus $\operatorname{Re}(u, v)=0 \forall u \in M$, and the same argument with s replaced by is shows that $(v, u)=0 \forall u \in M$.

Now $v \in w+M$, so $L v=L w \neq 0$. Consider the element $w^{\prime}=$ $w / L w \in H$. Since $L w^{\prime}=1$, for any $u \in H$

$$
L\left(u-(L u) w^{\prime}\right)=L u-L u=0 .
$$

It follows that $u-(L u) w^{\prime} \in M$ so if $w^{\prime \prime}=w^{\prime} /\left\|w^{\prime}\right\|^{2}$

$$
\left(u, w^{\prime \prime}\right)=\left((L u) w^{\prime}, w^{\prime \prime}\right)=L u \frac{\left(w^{\prime}, w^{\prime}\right)}{\left\|w^{\prime}\right\|^{2}}=L u
$$

The uniqueness of v follows from the positivity of the norm.
Corollary 5.4. For any positive measure μ, any continuous linear functional

$$
L: L^{2}(X, \mu) \rightarrow \mathbb{C}
$$

is of the form

$$
L f=\int_{X} f \bar{g} d \mu, g \in L^{2}(X, \mu)
$$

Notice the apparent power of 'abstract reasoning' here! Although we seem to have constructed g out of nowhere, its existence follows from the completeness of $L^{2}(X, \mu)$, but it is very convenient to express the argument abstractly for a general Hilbert space.

[^0]: ${ }^{8}$ Notice that (u, u) is real by (5.3).
 ${ }^{9}$ No ' t ' in this Schwarz.

