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5. Hilbert space 

We have shown that Lp(X, µ) is a Banach space – a complete normed 
space. I shall next discuss the class of Hilbert spaces, a special class of 
Banach spaces, of which L2(X, µ) is a standard example, in which the 
norm arises from an inner product, just as it does in Euclidean space. 

An inner product on a vector space V over C (one can do the real 
case too, not much changes) is a sesquilinear form 

V × V � C 

written (u, v), if u, v ⊂ V . The ‘sesqui-’ part is just linearity in the first 
variable 

(5.1) (a1u1 + a2u2 , v) = a1(u1, v) + a2(u2, v), 

anti-linearly in the second 

(5.2) (u, a1v1 + a2v2) = a1(u, v1) + a2(u, v2) 

and the conjugacy condition 

(5.3) (u, v) = (v, u) . 

Notice that (5.2) follows from (5.1) and (5.3). If we assume in addition 
the positivity condition8 

(5.4) (u, u) → 0 , (u, u) = 0 ≤ u = 0 , 

then 

(5.5) ⇒u⇒ = (u, u)1/2 

is a norm on V , as we shall see. 
Suppose that u, v ⊂ V have ⇒u⇒ = ⇒v⇒ = 1. Then (u, v) = ei� |(u, v)| 

for some � ⊂ R. By choice of �, e−i� (u, v) = |(u, v)| is real, so expanding 
out using linearity for s ⊂ R, 

−i�0 ∀ (e −i� u − sv , e u − sv) 
−i� 2 2 = ⇒u⇒ 2 − 2s Re e (u, v) + s ⇒v⇒ 2 = 1 − 2s|(u, v)|+ s . 

The minimum of this occurs when s = |(u, v)| and this is negative 
unless |(u, v)| ∀ 1. Using linearity, and checking the trivial cases u = 
or v = 0 shows that 

(5.6) |(u, v)| ∀ ⇒u⇒ ⇒v⇒, � u, v ⊂ V . 

This is called Schwarz’9 inequality. 

8Notice that (u, u) is real by (5.3).

9No ‘t’ in this Schwarz.
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Using Schwarz’ inequality 
2 ⇒u + v⇒ 2 = ⇒u⇒ + (u, v) + (v, u) + ⇒v⇒ 2 

∀ (⇒u⇒ + ⇒v⇒)2 

=≤ ⇒u + v⇒ ∀ ⇒u⇒ + ⇒v⇒ � u, v ⊂ V 

which is the triangle inequality. 

Definition 5.1. A Hilbert space is a vector space V with an inner 
product satisfying (5.1) - (5.4) which is complete as a normed space 
(i.e., is a Banach space). 

Thus we have already shown L2(X, µ) to be a Hilbert space for any 
positive measure µ. The inner product is 

(5.7)	 (f, g) = fg dµ , 
X 

since then (5.3) gives ⇒f⇒2. 
Another important identity valid in any inner product spaces is the 

parallelogram law: 
2(5.8) ⇒u + v⇒ 2 + ⇒u − v⇒ 2 = 2⇒u⇒ 2 + 2⇒v⇒ . 

This can be used to prove the basic ‘existence theorem’ in Hilbert space 
theory. 

Lemma 5.2. Let C � H, in a Hilbert space, be closed and convex (i.e., 
su + (1 − s)v ⊂ C if u, v ⊂ C and 0 < s < 1). Then C contains a 
unique element of smallest norm. 

Proof. We can certainly choose a sequence un ⊂ C such that 

⇒un⇒ � � = inf {⇒v⇒ ; v ⊂ C} . 

By the parallelogram law, 
2 ⇒un − um⇒ 2 = 2⇒un⇒ 2 + 2⇒um⇒	2 − ⇒un + um⇒ 

2) − 4�2∀ 2(⇒un⇒ 2 + ⇒um⇒ 

where we use the fact that (un + um)/2 ⊂ C so must have norm at least 
�. Thus {un} is a Cauchy sequence, hence convergent by the assumed 
completeness of H. Thus lim un = u ⊂ C (since it is assumed closed) 
and by the triangle inequality 

|⇒un⇒ − ⇒u⇒| ∀ ⇒un − u⇒ � 0 

So ⇒u⇒ = �. Uniqueness of u follows again from the parallelogram law 
which shows that if ⇒u�⇒ = � then 

⇒u − u �⇒ ∀ 2�2 − 4⇒(u + u )/2⇒ 2 ∀ 0 . 
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The fundamental fact about a Hilbert space is that each element 
v ⊂ H defines a continuous linear functional by 

H � u ∈−� (u, v) ⊂ C 

and conversely every continuous linear functional arises this way. This 
is also called the Riesz representation theorem. 

Proposition 5.3. If L : H � C is a continuous linear functional on 
a Hilbert space then this is a unique element v ⊂ H such that 

(5.9) Lu = (u, v) � u ⊂ H , 

Proof. Consider the linear space 

M = {u ⊂ H ; Lu = 0} 

the null space of L, a continuous linear functional on H. By the as
sumed continuity, M is closed. We can suppose that L is not identically 
zero (since then v = 0 in (5.9)). Thus there exists w /⊂ M . Consider 

w + M = {v ⊂ H ; v = w + u , u ⊂ M } . 

This is a closed convex subset of H. Applying Lemma 5.2 it has a 
unique smallest element, v ⊂ w + M . Since v minimizes the norm on 
w + M , 

2 2 ⇒v + su⇒ 2 = ⇒v⇒ + 2 Re(su, v) + ⇒s⇒ 2 ⇒u⇒ 

is stationary at s = 0. Thus Re(u, v) = 0 � u ⊂ M , and the same 
argument with s replaced by is shows that (v, u) = 0 � u ⊂ M . 

Now v ⊂ w + M , so Lv = Lw ≥= 0. Consider the element w� = 
w/Lw ⊂ H. Since Lw� = 1, for any u ⊂ H 

L(u − (Lu)w �) = Lu − Lu = 0 . 
� 2It follows that u − (Lu)w� ⊂ M so if w�� = w�/⇒w ⇒

(w , w�)
(u, w ��) = ((Lu)w , w ) = Lu = Lu . 

⇒w�⇒2 

The uniqueness of v follows from the positivity of the norm. � 

Corollary 5.4. For any positive measure µ, any continuous linear 
functional 

L : L2(X, µ) � C 

is of the form 

Lf = fg dµ , g ⊂ L2(X, µ) . 
X 
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Notice the apparent power of ‘abstract reasoning’ here! Although we 
seem to have constructed g out of nowhere, its existence follows from 
the completeness of L2(X, µ), but it is very convenient to express the 
argument abstractly for a general Hilbert space. 


