3. Measureability of functions

Suppose that \mathcal{M} is a σ-algebra on a set X^{4} and \mathcal{N} is a σ-algebra on another set Y. A map $f: X \rightarrow Y$ is said to be measurable with respect to these given σ-algebras on X and Y if

$$
\begin{equation*}
f^{-1}(E) \in \mathcal{M} \forall E \in \mathcal{N} . \tag{3.1}
\end{equation*}
$$

Notice how similar this is to one of the characterizations of continuity for maps between metric spaces in terms of open sets. Indeed this analogy yields a useful result.

Lemma 3.1. If $G \subset \mathcal{N}$ generates \mathcal{N}, in the sense that

$$
\begin{equation*}
\mathcal{N}=\bigcap\left\{\mathcal{N}^{\prime} ; \mathcal{N}^{\prime} \supset G, \mathcal{N}^{\prime} \text { a } \sigma \text {-algebra }\right\} \tag{3.2}
\end{equation*}
$$

then $f: X \longrightarrow Y$ is measurable iff $f^{-1}(A) \in \mathcal{M}$ for all $A \in G$.
Proof. The main point to note here is that f^{-1} as a map on power sets, is very well behaved for any map. That is if $f: X \rightarrow Y$ then $f^{-1}: \mathcal{P}(Y) \rightarrow \mathcal{P}(X)$ satisfies:

$$
\begin{gather*}
f^{-1}\left(E^{C}\right)=\left(f^{-1}(E)\right)^{C} \\
f^{-1}\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\bigcup_{j=1}^{\infty} f^{-1}\left(E_{j}\right) \tag{3.3}\\
f^{-1}\left(\bigcap_{j=1}^{\infty} E_{j}\right)=\bigcap_{j=1}^{\infty} f^{-1}\left(E_{j}\right) \\
f^{-1}(\phi)=\phi, f^{-1}(Y)=X .
\end{gather*}
$$

Putting these things together one sees that if \mathcal{M} is any σ-algebra on X then

$$
\begin{equation*}
f_{*}(\mathcal{M})=\left\{E \subset Y ; f^{-1}(E) \in \mathcal{M}\right\} \tag{3.4}
\end{equation*}
$$

is always a σ-algebra on Y.
In particular if $f^{-1}(A) \in \mathcal{M}$ for all $A \in G \subset \mathcal{N}$ then $f_{*}(\mathcal{M})$ is a σ algebra containing G, hence containing \mathcal{N} by the generating condition. Thus $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}$ so f is measurable.

Proposition 3.2. Any continuous map $f: X \rightarrow Y$ between metric spaces is measurable with respect to the Borel σ-algebras on X and Y.

[^0]Proof. The continuity of f shows that $f^{-1}(E) \subset X$ is open if $E \subset Y$ is open. By definition, the open sets generate the Borel σ-algebra on Y so the preceeding Lemma shows that f is Borel measurable i.e.,

$$
f^{-1}(\mathcal{B}(Y)) \subset \mathcal{B}(X)
$$

We are mainly interested in functions on X. If \mathcal{M} is a σ-algebra on X then $f: X \rightarrow \mathbb{R}$ is measurable if it is measurable with respect to the Borel σ-algebra on \mathbb{R} and \mathcal{M} on X. More generally, for an extended function $f: X \rightarrow[-\infty, \infty]$ we take as the 'Borel' σ-algebra in $[-\infty, \infty]$ the smallest σ-algebra containing all open subsets of \mathbb{R} and all sets $(a, \infty]$ and $[-\infty, b)$; in fact it is generated by the sets $(a, \infty]$. (See Problem 6.)

Our main task is to define the integral of a measurable function: we start with simple functions. Observe that the characteristic function of a set

$$
\chi_{E}= \begin{cases}1 & x \in E \\ 0 & x \notin E\end{cases}
$$

is measurable if and only if $E \in \mathcal{M}$. More generally a simple function,

$$
\begin{equation*}
f=\sum_{i=1}^{N} a_{i} \chi_{E_{i}}, a_{i} \in \mathbb{R} \tag{3.5}
\end{equation*}
$$

is measurable if the E_{i} are measurable. The presentation, (3.5), of a simple function is not unique. We can make it so, getting the minimal presentation, by insisting that all the a_{i} are non-zero and

$$
E_{i}=\left\{x \in E ; f(x)=a_{i}\right\}
$$

then f in (3.5) is measurable iff all the E_{i} are measurable.
The Lebesgue integral is based on approximation of functions by simple functions, so it is important to show that this is possible.

Proposition 3.3. For any non-negative μ-measurable extended function $f: X \longrightarrow[0, \infty]$ there is an increasing sequence f_{n} of simple measurable functions such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for each $x \in X$ and this limit is uniform on any measurable set on which f is finite.

Proof. Folland [1] page 45 has a nice proof. For each integer $n>0$ and $0 \leq k \leq 2^{2 n}-1$, set

$$
\begin{gathered}
E_{n, k}=\left\{x \in X ; 2^{-n} k \leq f(x)<2^{-n}(k+1)\right\}, \\
E_{n}^{\prime}=\left\{x \in X ; f(x) \geq 2^{n}\right\} .
\end{gathered}
$$

These are measurable sets. On increasing n by one, the interval in the definition of $E_{n, k}$ is divided into two. It follows that the sequence of simple functions

$$
\begin{equation*}
f_{n}=\sum_{k} 2^{-n} k \chi_{E_{k, n}}+2^{n} \chi_{E_{n}^{\prime}} \tag{3.6}
\end{equation*}
$$

is increasing and has limit f and that this limit is uniform on any measurable set where f is finite.

[^0]: ${ }^{4}$ Then X, or if you want to be pedantic (X, \mathcal{M}), is often said to be a measure space or even a measurable space.

