RICHARD B. MELROSE

3. Measureability of functions

Suppose that \mathcal{M} is a σ -algebra on a set X^4 and \mathcal{N} is a σ -algebra on another set Y. A map $f: X \to Y$ is said to be *measurable* with respect to these given σ -algebras on X and Y if

(3.1)
$$f^{-1}(E) \in \mathcal{M} \,\,\forall \,\, E \in \mathcal{N} \,.$$

Notice how similar this is to one of the characterizations of continuity for maps between metric spaces in terms of open sets. Indeed this analogy yields a useful result.

Lemma 3.1. If $G \subset \mathcal{N}$ generates \mathcal{N} , in the sense that

(3.2)
$$\mathcal{N} = \bigcap \{ \mathcal{N}'; \mathcal{N}' \supset G, \ \mathcal{N}' \ a \ \sigma\text{-algebra} \}$$

then $f: X \longrightarrow Y$ is measurable iff $f^{-1}(A) \in \mathcal{M}$ for all $A \in G$.

Proof. The main point to note here is that f^{-1} as a map on power sets, is very well behaved for *any* map. That is if $f: X \to Y$ then $f^{-1}: \mathcal{P}(Y) \to \mathcal{P}(X)$ satisfies:

(3.3)

$$f^{-1}(E^{C}) = (f^{-1}(E))^{C}$$

$$f^{-1}\left(\bigcup_{j=1}^{\infty} E_{j}\right) = \bigcup_{j=1}^{\infty} f^{-1}(E_{j})$$

$$f^{-1}\left(\bigcap_{j=1}^{\infty} E_{j}\right) = \bigcap_{j=1}^{\infty} f^{-1}(E_{j})$$

$$f^{-1}(\phi) = \phi, \ f^{-1}(Y) = X.$$

Putting these things together one sees that if \mathcal{M} is any σ -algebra on X then

(3.4)
$$f_*(\mathcal{M}) = \left\{ E \subset Y; f^{-1}(E) \in \mathcal{M} \right\}$$

is always a σ -algebra on Y.

In particular if $f^{-1}(A) \in \mathcal{M}$ for all $A \in G \subset \mathcal{N}$ then $f_*(\mathcal{M})$ is a σ algebra containing G, hence containing \mathcal{N} by the generating condition. Thus $f^{-1}(E) \in \mathcal{M}$ for all $E \in \mathcal{N}$ so f is measurable.

Proposition 3.2. Any continuous map $f : X \to Y$ between metric spaces is measurable with respect to the Borel σ -algebras on X and Y.

⁴Then X, or if you want to be pedantic (X, \mathcal{M}) , is often said to be a *measure* space or even a *measurable space*.

Proof. The continuity of f shows that $f^{-1}(E) \subset X$ is open if $E \subset Y$ is open. By definition, the open sets generate the Borel σ -algebra on Y so the preceeding Lemma shows that f is Borel measurable i.e.,

$$f^{-1}(\mathcal{B}(Y)) \subset \mathcal{B}(X).$$

We are mainly interested in functions on X. If \mathcal{M} is a σ -algebra on X then $f: X \to \mathbb{R}$ is *measurable* if it is measurable with respect to the Borel σ -algebra on \mathbb{R} and \mathcal{M} on X. More generally, for an extended function $f: X \to [-\infty, \infty]$ we take as the 'Borel' σ -algebra in $[-\infty, \infty]$ the smallest σ -algebra containing all open subsets of \mathbb{R} and all sets $(a, \infty]$ and $[-\infty, b)$; in fact it is generated by the sets $(a, \infty]$. (See Problem 6.)

Our main task is to define the integral of a measurable function: we start with *simple functions*. Observe that the characteristic function of a set

$$\chi_E = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

is measurable if and only if $E \in \mathcal{M}$. More generally a simple function,

(3.5)
$$f = \sum_{i=1}^{N} a_i \chi_{E_i}, \ a_i \in \mathbb{R}$$

is measurable if the E_i are measurable. The presentation, (3.5), of a simple function is not unique. We can make it so, getting the minimal presentation, by insisting that all the a_i are non-zero and

$$E_i = \{x \in E ; f(x) = a_i\}$$

then f in (3.5) is measurable iff all the E_i are measurable.

The Lebesgue integral is based on approximation of functions by simple functions, so it is important to show that this is possible.

Proposition 3.3. For any non-negative μ -measurable extended function $f : X \longrightarrow [0, \infty]$ there is an increasing sequence f_n of simple measurable functions such that $\lim_{n\to\infty} f_n(x) = f(x)$ for each $x \in X$ and this limit is uniform on any measurable set on which f is finite.

Proof. Folland [1] page 45 has a nice proof. For each integer n > 0 and $0 \le k \le 2^{2n} - 1$, set

$$E_{n,k} = \{ x \in X; 2^{-n}k \le f(x) < 2^{-n}(k+1) \},\$$
$$E'_n = \{ x \in X; f(x) \ge 2^n \}.$$

These are measurable sets. On increasing n by one, the interval in the definition of $E_{n,k}$ is divided into two. It follows that the sequence of simple functions

(3.6)
$$f_n = \sum_k 2^{-n} k \chi_{E_{k,n}} + 2^n \chi_{E'_n}$$

is increasing and has limit f and that this limit is uniform on any measurable set where f is finite.