RICHARD B. MELROSE

2. Measures and σ -algebras

An outer measure such as μ^* is a rather crude object since, even if the A_i are disjoint, there is generally strict inequality in (1.14). It turns out to be unreasonable to expect equality in (1.14), for disjoint unions, for a function defined on *all* subsets of X. We therefore restrict attention to smaller collections of subsets.

Definition 2.1. A collection of subsets \mathcal{M} of a set X is a σ -algebra if

- (1) $\phi, X \in \mathcal{M}$
- $(2) \quad E \in \mathcal{M} \Longrightarrow E^C = X \backslash E \in \mathcal{M}$
- (3) $\{E_i\}_{i=1}^{\infty} \subset \mathcal{M} \Longrightarrow \bigcup_{i=1}^{\infty} E_i \in \mathcal{M}.$

For a general outer measure μ^* we define the notion of $\mu^*\text{-measurability}$ of a set.

Definition 2.2. A set $E \subset X$ is μ^* -measurable (for an outer measure μ^* on X) if

(2.1)
$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^{\complement}) \ \forall \ A \subset X .$$

Proposition 2.3. The collection of μ^* -measurable sets for any outer measure is a σ -algebra.

Proof. Suppose E is μ^* -measurable, then E^C is μ^* -measurable by the symmetry of (2.1).

Suppose A, E and F are any three sets. Then

$$A \cap (E \cup F) = (A \cap E \cap F) \cup (A \cap E \cap F^C) \cup (A \cap E^C \cap F)$$
$$A \cap (E \cup F)^C = A \cap E^C \cap F^C.$$

From the subadditivity of μ^*

$$\mu^*(A \cap (E \cup F)) + \mu^*(A \cap (E \cup F)^C)$$

$$\leq \mu^*(A \cap E \cap F) + \mu^*(A \cap E \cup F^C)$$

$$+ \mu^*(A \cap E^C \cap F) + \mu^*(A \cap E^C \cap F^C).$$

Now, if E and F are μ^* -measurable then applying the definition twice, for any A,

$$\mu^{*}(A) = \mu^{*}(A \cap E \cap F) + \mu^{*}(A \cap E \cap F^{C}) + \mu^{*}(A \cap E^{C} \cap F) + \mu^{*}(A \cap E^{C} \cap F^{C}) \geq \mu^{*}(A \cap (E \cup F)) + \mu^{*}(A \cap (E \cup F)^{C}).$$

The reverse inequality follows from the subadditivity of μ^* , so $E \cup F$ is also μ^* -measurable.

If $\{E_i\}_{i=1}^{\infty}$ is a sequence of disjoint μ^* -measurable sets, set $F_n = \bigcup_{i=1}^{n} E_i$ and $F = \bigcup_{i=1}^{\infty} E_i$. Then for any A,

$$\mu^*(A \cap F_n) = \mu^*(A \cap F_n \cap E_n) + \mu^*(A \cap F_n \cap E_n^C) = \mu^*(A \cap E_n) + \mu^*(A \cap F_{n-1}).$$

Iterating this shows that

$$\mu^*(A \cap F_n) = \sum_{j=1}^n \mu^*(A \cap E_j)$$

From the μ^* -measurability of F_n and the subadditivity of μ^* ,

$$\mu^*(A) = \mu^*(A \cap F_n) + \mu^*(A \cap F_n^C)$$

$$\geq \sum_{j=1}^n \mu^*(A \cap E_j) + \mu^*(A \cap F^C).$$

Taking the limit as $n \to \infty$ and using subadditivity,

(2.2)
$$\mu^*(A) \ge \sum_{j=1}^{\infty} \mu^*(A \cap E_j) + \mu^*(A \cap F^C) \\\ge \mu^*(A \cap F) + \mu^*(A \cap F^C) \ge \mu^*(A)$$

proves that inequalities are equalities, so F is also μ^* -measurable.

In general, for any countable union of μ^* -measurable sets,

$$\bigcup_{j=1}^{\infty} A_j = \bigcup_{j=1}^{\infty} \widetilde{A}_j ,$$
$$\widetilde{A}_j = A_j \setminus \bigcup_{i=1}^{j-1} A_i = A_j \cap \left(\bigcup_{i=1}^{j-1} A_i\right)^C$$

is μ^* -measurable since the \widetilde{A}_j are disjoint.

A measure (sometimes called a *positive measure*) is an extended function defined on the elements of a σ -algebra \mathcal{M} :

$$\mu: \mathcal{M} \to [0,\infty]$$

such that

(2.3)
$$\mu(\emptyset) = 0$$
 and

(2.4)
$$\mu\left(\bigcup_{i=1}^{\infty}A_i\right) = \sum_{i=1}^{\infty}\mu(A_i)$$
 if $\{A_i\}_{i=1}^{\infty} \subset \mathcal{M} \text{ and } A_i \cap A_j = \phi \ i \neq j.$

The elements of \mathcal{M} with measure zero, i.e., $E \in \mathcal{M}$, $\mu(E) = 0$, are supposed to be 'ignorable'. The measure μ is said to be *complete* if

(2.5)
$$E \subset X \text{ and } \exists F \in \mathcal{M}, \ \mu(F) = 0, \ E \subset F \Rightarrow E \in \mathcal{M}.$$

See Problem 4.

The first part of the following important result due to Caratheodory was shown above.

Theorem 2.4. If μ^* is an outer measure on X then the collection of μ^* -measurable subsets of X is a σ -algebra and μ^* restricted to \mathcal{M} is a complete measure.

Proof. We have already shown that the collection of μ^* -measurable subsets of X is a σ -algebra. To see the second part, observe that taking A = F in (2.2) gives

$$\mu^*(F) = \sum_j \mu^*(E_j) \text{ if } F = \bigcup_{j=1}^{\infty} E_j$$

and the E_i are disjoint elements of \mathcal{M} . This is (2.4).

Similarly if $\mu^*(E) = 0$ and $F \subset E$ then $\mu^*(F) = 0$. Thus it is enough to show that for any subset $E \subset X$, $\mu^*(E) = 0$ implies $E \in \mathcal{M}$. For any $A \subset X$, using the fact that $\mu^*(A \cap E) = 0$, and the 'increasing' property of μ^*

$$\mu^*(A) \le \mu^*(A \cap E) + \mu^*(A \cap E^C)$$
$$= \mu^*(A \cap E^C) \le \mu^*(A)$$

shows that these must always be equalities, so $E \in \mathcal{M}$ (i.e., is μ^* -measurable).

Going back to our primary concern, recall that we constructed the outer measure μ^* from $0 \leq u \in (\mathcal{C}_0(X))'$ using (1.11) and (1.12). For the measure whose existence follows from Caratheodory's theorem to be much use we need

Proposition 2.5. If $0 \le u \in (\mathcal{C}_0(X))'$, for X a locally compact metric space, then each open subset of X is μ^* -measurable for the outer measure defined by (1.11) and (1.12) and μ in (1.11) is its measure.

Proof. Let $U \subset X$ be open. We only need to prove (2.1) for all $A \subset X$ with $\mu^*(A) < \infty^2$.

 2 Why?

Suppose first that $A \subset X$ is open and $\mu^*(A) < \infty$. Then $A \cap U$ is open, so given $\epsilon > 0$ there exists $f \in C(X)$ supp $(f) \Subset A \cap U$ with $0 \le f \le 1$ and

$$\mu^*(A \cap U) = \mu(A \cap U) \le u(f) + \epsilon.$$

Now, $A \setminus \text{supp}(f)$ is also open, so we can find $g \in C(X)$, $0 \leq g \leq 1$, $\text{supp}(g) \Subset A \setminus \text{supp}(f)$ with

$$\mu^*(A \setminus \operatorname{supp}(f)) = \mu(A \setminus \operatorname{supp}(f)) \le u(g) + \epsilon$$
.

Since

$$\begin{split} A \setminus \mathrm{supp}(f) \supset A \cap U^C \,, \, 0 &\leq f + g \leq 1 \,, \, \mathrm{supp}(f + g) \Subset A \,, \\ \mu(A) &\geq u(f + g) = u(f) + u(g) \\ &> \mu^*(A \cap U) + \mu^*(A \cap U^C) - 2\epsilon \\ &\geq \mu^*(A) - 2\epsilon \end{split}$$

using subadditivity of μ^* . Letting $\epsilon \downarrow 0$ we conclude that

$$\mu^*(A) \le \mu^*(A \cap U) + \mu^*(A \cap U^C) \le \mu^*(A) = \mu(A) \,.$$

This gives (2.1) when A is open.

In general, if $E \subset X$ and $\mu^*(E) < \infty$ then given $\epsilon > 0$ there exists $A \subset X$ open with $\mu^*(E) > \mu^*(A) - \epsilon$. Thus,

$$\mu^*(E) \ge \mu^*(A \cap U) + \mu^*(A \cap U^C) - \epsilon$$
$$\ge \mu^*(E \cap U) + \mu^*(E \cap U^C) - \epsilon$$
$$\ge \mu^*(E) - \epsilon.$$

This shows that (2.1) always holds, so U is μ^* -measurable if it is open. We have already observed that $\mu(U) = \mu^*(U)$ if U is open.

Thus we have shown that the σ -algebra given by Caratheodory's theorem contains all open sets. You showed in Problem 3 that the intersection of any collection of σ -algebras on a given set is a σ -algebra. Since $\mathcal{P}(X)$ is always a σ -algebra it follows that for any collection $\mathcal{E} \subset \mathcal{P}(X)$ there is always a smallest σ -algebra containing \mathcal{E} , namely

$$\mathcal{M}_{\mathcal{E}} = \bigcap \left\{ \mathcal{M} \supset \mathcal{E} \, ; \, \mathcal{M} \text{ is a } \sigma \text{-algebra } , \, \mathcal{M} \subset \mathcal{P}(X) \right\}$$

The elements of the smallest σ -algebra containing the *open sets* are called 'Borel sets'. A measure defined on the σ -algebra of all Borel sets is called a *Borel measure*. This we have shown:

Proposition 2.6. The measure defined by (1.11), (1.12) from $0 \le u \in (\mathcal{C}_0(X))'$ by Caratheodory's theorem is a Borel measure.

Proof. This is what Proposition 2.5 says! See how easy proofs are. \Box

We can even continue in the same vein. A Borel measure is said to be *outer regular* on $E \subset X$ if

(2.6)
$$\mu(E) = \inf \left\{ \mu(U) ; U \supset E, U \text{ open} \right\}.$$

Thus the measure constructed in Proposition 2.5 is outer regular on all Borel sets! A Borel measure is *inner regular* on E if

(2.7)
$$\mu(E) = \sup \{\mu(K); K \subset E, K \text{ compact}\}.$$

Here we need to know that compact sets are Borel measurable. This is Problem 5.

Definition 2.7. A Radon measure (on a metric space) is a Borel measure which is outer regular on all Borel sets, inner regular on open sets and finite on compact sets.

Proposition 2.8. The measure defined by (1.11), (1.12) from $0 \le u \in (\mathcal{C}_0(X))'$ using Caratheodory's theorem is a Radon measure.

Proof. Suppose $K \subset X$ is compact. Let χ_K be the characteristic function of K, $\chi_K = 1$ on K, $\chi_K = 0$ on K^C . Suppose $f \in \mathcal{C}_0(X)$, $\operatorname{supp}(f) \Subset X$ and $f \geq \chi_K$. Set

$$U_{\epsilon} = \{ x \in X ; f(x) > 1 - \epsilon \}$$

where $\epsilon > 0$ is small. Thus U_{ϵ} is open, by the continuity of f and contains K. Moreover, we can choose $g \in C(X)$, $\operatorname{supp}(g) \Subset U_{\epsilon}$, $0 \leq g \leq 1$ with g = 1 near³ K. Thus, $g \leq (1 - \epsilon)^{-1} f$ and hence

$$\mu^*(K) \le u(g) = (1 - \epsilon)^{-1} u(f)$$
.

Letting $\epsilon \downarrow 0$, and using the measurability of K,

$$\mu(K) \le u(f)$$

$$\Rightarrow \mu(K) = \inf \{ u(f) ; f \in C(X), \operatorname{supp}(f) \Subset X, f \ge \chi_K \} .$$

In particular this implies that $\mu(K) < \infty$ if $K \subseteq X$, but is also proves (2.7).

Let me now review a little of what we have done. We used the positive functional u to define an outer measure μ^* , hence a measure μ and then checked the properties of the latter.

This is a pretty nice scheme; getting ahead of myself a little, let me suggest that we try it on something else.

³Meaning in a neighborhood of K.

Let us say that $Q \subset \mathbb{R}^n$ is 'rectangular' if it is a product of finite intervals (open, closed or half-open)

(2.8)
$$Q = \prod_{i=1}^{n} (\operatorname{or}[a_i, b_i] \operatorname{or}) \ a_i \le b_i$$

we all agree on its standard volume:

(2.9)
$$v(Q) = \prod_{i=1}^{n} (b_i - a_i) \in [0, \infty).$$

Clearly if we have two such sets, $Q_1 \subset Q_2$, then $v(Q_1) \leq v(Q_2)$. Let us try to define an outer measure on subsets of \mathbb{R}^n by

(2.10)
$$v^*(A) = \inf\left\{\sum_{i=1}^{\infty} v(Q_i); A \subset \bigcup_{i=1}^{\infty} Q_i, Q_i \text{ rectangular}\right\}.$$

We want to show that (2.10) does define an outer measure. This is pretty easy; certainly $v(\emptyset) = 0$. Similarly if $\{A_i\}_{i=1}^{\infty}$ are (disjoint) sets and $\{Q_{ij}\}_{i=1}^{\infty}$ is a covering of A_i by open rectangles then all the Q_{ij} together cover $A = \bigcup_i A_i$ and

$$v^*(A) \le \sum_i \sum_j v(Q_{ij})$$

$$\Rightarrow v^*(A) \le \sum_i v^*(A_i).$$

So we have an outer measure. We also want

Lemma 2.9. If Q is rectangular then $v^*(Q) = v(Q)$.

Assuming this, the measure defined from v^* using Caratheodory's theorem is called Lebesgue measure.

Proposition 2.10. Lebesgue measure is a Borel measure.

To prove this we just need to show that (open) rectangular sets are v^* -measurable.