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2. Measures and σ-algebras

An outer measure such as µ∗ is a rather crude object since, even
if the Ai are disjoint, there is generally strict inequality in (1.14). It
turns out to be unreasonable to expect equality in (1.14), for disjoint
unions, for a function defined on all subsets of X. We therefore restrict
attention to smaller collections of subsets.

Definition 2.1. A collection of subsets M of a set X is a σ-algebra if

(1) φ, X ∈ M
(2) E ∈ M =⇒ EC = X\E ∈ M
(3) {Ei}

∞

i=1
⊂ M =⇒

⋃
∞

i=1
Ei ∈ M.

For a general outer measure µ∗ we define the notion of µ∗-measurability
of a set.

Definition 2.2. A set E ⊂ X is µ∗-measurable (for an outer measure
µ∗ on X) if

(2.1) µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ E{) ∀ A ⊂ X .

Proposition 2.3. The collection of µ∗-measurable sets for any outer
measure is a σ-algebra.

Proof. Suppose E is µ∗-measurable, then EC is µ∗-measurable by the
symmetry of (2.1).

Suppose A, E and F are any three sets. Then

A ∩ (E ∪ F ) = (A ∩ E ∩ F ) ∪ (A ∩ E ∩ F C) ∪ (A ∩ EC ∩ F )

A ∩ (E ∪ F )C = A ∩ EC ∩ F C .

From the subadditivity of µ∗

µ∗(A ∩ (E ∪ F )) + µ∗(A ∩ (E ∪ F )C)

≤ µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∪ F C)

+ µ∗(A ∩ EC ∩ F ) + µ∗(A ∩ EC ∩ F C).

Now, if E and F are µ∗-measurable then applying the definition twice,
for any A,

µ∗(A) = µ∗(A ∩ E ∩ F ) + µ∗(A ∩ E ∩ F C)

+ µ∗(A ∩ EC ∩ F ) + µ∗(A ∩ EC ∩ F C)

≥ µ∗(A ∩ (E ∪ F )) + µ∗(A ∩ (E ∪ F )C) .

The reverse inequality follows from the subadditivity of µ∗, so E ∪ F

is also µ∗-measurable.
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If {Ei}
∞

i=1
is a sequence of disjoint µ∗-measurable sets, set Fn =⋃n

i=1
Ei and F =

⋃
∞

i=1
Ei. Then for any A,

µ∗(A ∩ Fn) = µ∗(A ∩ Fn ∩ En) + µ∗(A ∩ Fn ∩ EC
n )

= µ∗(A ∩ En) + µ∗(A ∩ Fn−1) .

Iterating this shows that

µ∗(A ∩ Fn) =
n∑

j=1

µ∗(A ∩ Ej) .

From the µ∗-measurability of Fn and the subadditivity of µ∗,

µ∗(A) = µ∗(A ∩ Fn) + µ∗(A ∩ F C
n )

≥
n∑

j=1

µ∗(A ∩ Ej) + µ∗(A ∩ F C) .

Taking the limit as n → ∞ and using subadditivity,

µ∗(A) ≥
∞∑

j=1

µ∗(A ∩ Ej) + µ∗(A ∩ F C)(2.2)

≥ µ∗(A ∩ F ) + µ∗(A ∩ F C) ≥ µ∗(A)

proves that inequalities are equalities, so F is also µ∗-measurable.
In general, for any countable union of µ∗-measurable sets,

∞⋃

j=1

Aj =

∞⋃

j=1

Ãj ,

Ãj = Aj\

j−1⋃

i=1

Ai = Aj ∩

(
j−1⋃

i=1

Ai

)C

is µ∗-measurable since the Ãj are disjoint. �

A measure (sometimes called a positive measure) is an extended func-
tion defined on the elements of a σ-algebra M:

µ : M → [0,∞]

such that

µ(∅) = 0 and(2.3)

µ

(
∞⋃

i=1

Ai

)
=

∞∑

i=1

µ(Ai)

if {Ai}
∞

i=1
⊂ M and Ai ∩ Aj = φ i 6= j.

(2.4)
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The elements of M with measure zero, i.e., E ∈ M, µ(E) = 0, are
supposed to be ‘ignorable’. The measure µ is said to be complete if

(2.5) E ⊂ X and ∃ F ∈ M , µ(F ) = 0 , E ⊂ F ⇒ E ∈ M .

See Problem 4.
The first part of the following important result due to Caratheodory

was shown above.

Theorem 2.4. If µ∗ is an outer measure on X then the collection of
µ∗-measurable subsets of X is a σ-algebra and µ∗ restricted to M is a
complete measure.

Proof. We have already shown that the collection of µ∗-measurable
subsets of X is a σ-algebra. To see the second part, observe that
taking A = F in (2.2) gives

µ∗(F ) =
∑

j

µ∗(Ej) if F =

∞⋃

j=1

Ej

and the Ej are disjoint elements of M. This is (2.4).
Similarly if µ∗(E) = 0 and F ⊂ E then µ∗(F ) = 0. Thus it is enough

to show that for any subset E ⊂ X, µ∗(E) = 0 implies E ∈ M. For
any A ⊂ X, using the fact that µ∗(A ∩ E) = 0, and the ‘increasing’
property of µ∗

µ∗(A) ≤ µ∗(A ∩ E) + µ∗(A ∩ EC)

= µ∗(A ∩ EC) ≤ µ∗(A)

shows that these must always be equalities, so E ∈ M (i.e., is µ∗-
measurable). �

Going back to our primary concern, recall that we constructed the
outer measure µ∗ from 0 ≤ u ∈ (C0(X))′ using (1.11) and (1.12). For
the measure whose existence follows from Caratheodory’s theorem to
be much use we need

Proposition 2.5. If 0 ≤ u ∈ (C0(X))′, for X a locally compact met-
ric space, then each open subset of X is µ∗-measurable for the outer
measure defined by (1.11) and (1.12) and µ in (1.11) is its measure.

Proof. Let U ⊂ X be open. We only need to prove (2.1) for all A ⊂ X

with µ∗(A) < ∞.2

2Why?
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Suppose first that A ⊂ X is open and µ∗(A) < ∞. Then A ∩ U is
open, so given ε > 0 there exists f ∈ C(X) supp(f) b A ∩ U with
0 ≤ f ≤ 1 and

µ∗(A ∩ U) = µ(A ∩ U) ≤ u(f) + ε .

Now, A\ supp(f) is also open, so we can find g ∈ C(X) , 0 ≤ g ≤
1 , supp(g) b A\ supp(f) with

µ∗(A\ supp(f)) = µ(A\ supp(f)) ≤ u(g) + ε .

Since

A\ supp(f) ⊃ A ∩ UC , 0 ≤ f + g ≤ 1 , supp(f + g) b A ,

µ(A) ≥ u(f + g) = u(f) + u(g)

> µ∗(A ∩ U) + µ∗(A ∩ UC) − 2ε

≥ µ∗(A) − 2ε

using subadditivity of µ∗. Letting ε ↓ 0 we conclude that

µ∗(A) ≤ µ∗(A ∩ U) + µ∗(A ∩ UC) ≤ µ∗(A) = µ(A) .

This gives (2.1) when A is open.
In general, if E ⊂ X and µ∗(E) < ∞ then given ε > 0 there exists

A ⊂ X open with µ∗(E) > µ∗(A) − ε. Thus,

µ∗(E) ≥ µ∗(A ∩ U) + µ∗(A ∩ UC) − ε

≥ µ∗(E ∩ U) + µ∗(E ∩ UC) − ε

≥ µ∗(E) − ε .

This shows that (2.1) always holds, so U is µ∗-measurable if it is open.
We have already observed that µ(U) = µ∗(U) if U is open. �

Thus we have shown that the σ-algebra given by Caratheodory’s
theorem contains all open sets. You showed in Problem 3 that the
intersection of any collection of σ-algebras on a given set is a σ-algebra.
Since P(X) is always a σ-algebra it follows that for any collection
E ⊂ P(X) there is always a smallest σ-algebra containing E , namely

ME =
⋂

{M ⊃ E ; M is a σ-algebra ,M ⊂ P(X)} .

The elements of the smallest σ-algebra containing the open sets are
called ‘Borel sets’. A measure defined on the σ-algebra of all Borel sets
is called a Borel measure. This we have shown:

Proposition 2.6. The measure defined by (1.11), (1.12) from 0 ≤ u ∈
(C0(X))′ by Caratheodory’s theorem is a Borel measure.

Proof. This is what Proposition 2.5 says! See how easy proofs are. �
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We can even continue in the same vein. A Borel measure is said to
be outer regular on E ⊂ X if

(2.6) µ(E) = inf {µ(U) ; U ⊃ E , U open} .

Thus the measure constructed in Proposition 2.5 is outer regular on all
Borel sets! A Borel measure is inner regular on E if

(2.7) µ(E) = sup {µ(K) ; K ⊂ E , K compact} .

Here we need to know that compact sets are Borel measurable. This
is Problem 5.

Definition 2.7. A Radon measure (on a metric space) is a Borel mea-
sure which is outer regular on all Borel sets, inner regular on open sets
and finite on compact sets.

Proposition 2.8. The measure defined by (1.11), (1.12) from 0 ≤ u ∈
(C0(X))′ using Caratheodory’s theorem is a Radon measure.

Proof. Suppose K ⊂ X is compact. Let χK be the characteristic func-
tion of K , χK = 1 on K , χK = 0 on KC . Suppose f ∈ C0(X) , supp(f) b

X and f ≥ χK . Set

Uε = {x ∈ X ; f(x) > 1 − ε}

where ε > 0 is small. Thus Uε is open, by the continuity of f and
contains K. Moreover, we can choose g ∈ C(X) , supp(g) b Uε , 0 ≤
g ≤ 1 with g = 1 near3 K. Thus, g ≤ (1 − ε)−1f and hence

µ∗(K) ≤ u(g) = (1 − ε)−1u(f) .

Letting ε ↓ 0, and using the measurability of K,

µ(K) ≤ u(f)

⇒ µ(K) = inf {u(f) ; f ∈ C(X) , supp(f) b X , f ≥ χK} .

In particular this implies that µ(K) < ∞ if K b X, but is also proves
(2.7). �

Let me now review a little of what we have done. We used the
positive functional u to define an outer measure µ∗, hence a measure
µ and then checked the properties of the latter.

This is a pretty nice scheme; getting ahead of myself a little, let me
suggest that we try it on something else.

3Meaning in a neighborhood of K.
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Let us say that Q ⊂ R
n is ‘rectangular’ if it is a product of finite

intervals (open, closed or half-open)

(2.8) Q =
n∏

i=1

(or[ai , bi]or) ai ≤ bi

we all agree on its standard volume:

(2.9) v(Q) =
n∏

i=1

(bi − ai) ∈ [0,∞) .

Clearly if we have two such sets, Q1 ⊂ Q2, then v(Q1) ≤ v(Q2). Let
us try to define an outer measure on subsets of R

n by

(2.10) v∗(A) = inf

{
∞∑

i=1

v(Qi) ; A ⊂
∞⋃

i=1

Qi, Qi rectangular

}
.

We want to show that (2.10) does define an outer measure. This is
pretty easy; certainly v(∅) = 0. Similarly if {Ai}

∞

i=1
are (disjoint) sets

and {Qij}
∞

i=1
is a covering of Ai by open rectangles then all the Qij

together cover A =
⋃

i Ai and

v∗(A) ≤
∑

i

∑

j

v(Qij)

⇒ v∗(A) ≤
∑

i

v∗(Ai) .

So we have an outer measure. We also want

Lemma 2.9. If Q is rectangular then v∗(Q) = v(Q).

Assuming this, the measure defined from v∗ using Caratheodory’s
theorem is called Lebesgue measure.

Proposition 2.10. Lebesgue measure is a Borel measure.

To prove this we just need to show that (open) rectangular sets are
v∗-measurable.


