16. Spectral theorem

For a bounded operator T on a Hilbert space we define the spectrum as the set

$$
\begin{equation*}
\operatorname{spec}(T)=\{z \in \mathbb{C} ; T-z \mathrm{Id} \text { is not invertible }\} \tag{16.1}
\end{equation*}
$$

Proposition 16.1. For any bounded linear operator on a Hilbert space $\operatorname{spec}(T) \subset \mathbb{C}$ is a compact subset of $\{|z| \leq\|T\|\}$.
Proof. We show that the set $\mathbb{C} \backslash \operatorname{spec}(T)$ (generally called the resolvent set of T) is open and contains the complement of a sufficiently large ball. This is based on the convergence of the Neumann series. Namely if T is bounded and $\|T\|<1$ then

$$
\begin{equation*}
(\mathrm{Id}-T)^{-1}=\sum_{j=0}^{\infty} T^{j} \tag{16.2}
\end{equation*}
$$

converges to a bounded operator which is a two-sided inverse of $\operatorname{Id}-T$. Indeed, $\left\|T^{j}\right\| \leq\|T\|^{j}$ so the series is convergent and composing with Id $-T$ on either side gives a telescoping series reducing to the identity.

Applying this result, we first see that

$$
\begin{equation*}
(T-z)=-z(\operatorname{Id}-T / z) \tag{16.3}
\end{equation*}
$$

is invertible if $|z|>\|T\|$. Similarly, if $\left(T-z_{0}\right)^{-1}$ exists for some $z_{0} \in \mathbb{C}$ then

$$
\begin{equation*}
(T-z)=\left(T-z_{0}\right)-\left(z-z_{0}\right)=\left(T-z_{0}\right)^{-1}\left(\operatorname{Id}-\left(z-z_{0}\right)\left(T-z_{0}\right)^{-1}\right) \tag{16.4}
\end{equation*}
$$

exists for $\left|z-z_{0}\right|\left\|\left(T-z_{0}\right)^{-1}\right\|<1$.
In general it is rather difficult to precisely locate $\operatorname{spec}(T)$.
However for a bounded self-adjoint operator it is easier. One sign of this is the the norm of the operator has an alternative, simple, characterization. Namely

$$
\begin{equation*}
\text { if } A^{*}=A \text { then } \sup _{\|\phi\|=1}\langle A \phi, \phi\rangle \mid=\|A\| \text {. } \tag{16.5}
\end{equation*}
$$

If a is this supermum, then clearly $a \leq\|A\|$. To see the converse, choose any $\phi, \psi \in H$ with norm 1 and then replace ψ by $e^{i \theta} \psi$ with θ chosen so that $\langle A \phi, \psi\rangle$ is real. Then use the polarization identity to write

$$
\begin{align*}
4\langle A \phi, \psi\rangle= & \langle A(\phi+\psi),(\phi+\psi)\rangle-\langle A(\phi-\psi),(\phi-\psi)\rangle \tag{16.6}\\
& +i\langle A(\phi+i \psi),(\phi+i \psi)\rangle-i\langle A(\phi-i \psi),(\phi-i \psi)\rangle
\end{align*}
$$

Now, by the assumed reality we may drop the last two terms and see that

$$
\begin{equation*}
4|\langle A \phi, \psi\rangle| \leq a\left(\|\phi+\psi\|^{2}+\|\phi-\psi\|^{2}\right)=2 a\left(\|\phi\|^{2}+\|\psi\|^{2}\right)=4 a . \tag{16.7}
\end{equation*}
$$

Thus indeed $\|A\|=\sup _{\|\phi\|=\|\psi\|=1}|\langle A \phi, \psi\rangle|=a$.
We can always subtract a real constant from A so that $A^{\prime}=A-t$ satisfies

$$
\begin{equation*}
-\inf _{\|\phi\|=1}\left\langle A^{\prime} \phi, \phi\right\rangle=\sup _{\|\phi\|=1}\left\langle A^{\prime} \phi, \phi\right\rangle=\left\|A^{\prime}\right\| . \tag{16.8}
\end{equation*}
$$

Then, it follows that $A^{\prime} \pm\left\|A^{\prime}\right\|$ is not invertible. Indeed, there exists a sequence ϕ_{n}, with $\left\|\phi_{n}\right\|=1$ such that $\left\langle\left(A^{\prime}-\left\|A^{\prime}\right\|\right) \phi_{n}, \phi_{n}\right\rangle \rightarrow 0$. Thus (16.9)
$\left\|\left(A^{\prime}-\left\|A^{\prime}\right\|\right) \phi_{n}\right\|^{2}=-2\left\langle A^{\prime} \phi_{n}, \phi_{n}\right\rangle+\left\|A^{\prime} \phi_{n}\right\|^{2}+\left\|A^{\prime}\right\|^{2} \leq-2\left\langle A^{\prime} \phi_{n}, \phi_{n}\right\rangle+2\left\|A^{\prime}\right\|^{2} \rightarrow 0$.
This shows that $A^{\prime}-\left\|A^{\prime}\right\|$ cannot be invertible and the same argument works for $A^{\prime}+\left\|A^{\prime}\right\|$. For the original operator A if we set

$$
\begin{equation*}
m=\inf _{\|\phi\|=1}\langle A \phi, \phi\rangle M=\sup _{\|\phi\|=1}\langle A \phi, \phi\rangle \tag{16.10}
\end{equation*}
$$

then we conclude that neither $A-m \mathrm{Id}$ nor $A-M$ Id is invertible and $\|A\|=\max (-m, M)$.

Proposition 16.2. If A is a bounded self-adjoint operator then, with m and M defined by (16.10),

$$
\begin{equation*}
\{m\} \cup\{M\} \subset \operatorname{spec}(A) \subset[m, M] . \tag{16.11}
\end{equation*}
$$

Proof. We have already shown the first part, that m and M are in the spectrum so it remains to show that $A-z$ is invertible for all $z \in \mathbb{C} \backslash[m, M]$.

Using the self-adjointness

$$
\begin{equation*}
\operatorname{Im}\langle(A-z) \phi, \phi\rangle=-\operatorname{Im} z\|\phi\|^{2} . \tag{16.12}
\end{equation*}
$$

This implies that $A-z$ is invertible if $z \in \mathbb{C} \backslash \mathbb{R}$. First it shows that $(A-z) \phi=0$ implies $\phi=0$, so $A-z$ is injective. Secondly, the range is closed. Indeed, if $(A-z) \phi_{n} \rightarrow \psi$ then applying (16.12) directly shows that $\left\|\phi_{n}\right\|$ is bounded and so can be replaced by a weakly convergent subsequence. Applying (16.12) again to $\phi_{n}-\phi_{m}$ shows that the sequence is actually Cauchy, hence convergens to ϕ so $(A-z) \phi=\psi$ is in the range. Finally, the orthocomplement to this range is the null space of $A^{*}-\bar{z}$, which is also trivial, so $A-z$ is an isomorphism and (16.12) also shows that the inverse is bounded, in fact

$$
\begin{equation*}
\left\|(A-z)^{-1}\right\| \leq \frac{1}{|\operatorname{Im} z|} \tag{16.13}
\end{equation*}
$$

When $z \in \mathbb{R}$ we can replace A by A^{\prime} satisfying (16.8). Then we have to show that $A^{\prime}-z$ is inverible for $|z|>\|A\|$, but that is shown in the proof of Proposition 16.1.

The basic estimate leading to the spectral theorem is:
Proposition 16.3. If A is a bounded self-adjoint operator and p is a real polynomial in one variable,

$$
\begin{equation*}
p(t)=\sum_{i=0}^{N} c_{i} t^{i}, c_{N} \neq 0 \tag{16.14}
\end{equation*}
$$

then $p(A)=\sum_{i=0}^{N} c_{i} A^{i}$ satisfies

$$
\begin{equation*}
\|p(A)\| \leq \sup _{t \in[m, M]}|p(t)| \tag{16.15}
\end{equation*}
$$

Proof. Clearly, $p(A)$ is a bounded self-adjoint operator. If $s \notin p([m, M])$ then $p(A)-s$ is invertible. Indeed, the roots of $p(t)-s$ must cannot lie in $[m . M]$, since otherwise $s \in p([m, M])$. Thus, factorizing $p(s)-t$ we have

$$
\begin{equation*}
p(t)-s=c_{N} \prod_{i=1}^{N}\left(t-t_{i}(s)\right), t_{i}(s) \notin[m, M] \Longrightarrow(p(A)-s)^{-1} \text { exists } \tag{16.16}
\end{equation*}
$$

since $\left.p(A)=c_{N} \sum_{i} A-t_{i}(s)\right)$ and each of the factors is invertible.
Thus $\operatorname{spec}(p(A)) \subset p([m, M])$, which is an interval (or a point), and from Proposition 16.3 we conclude that $\|p(A)\| \leq \sup p([m, M])$ which is (16.15).

Now, reinterpreting (16.15) we have a linear map

$$
\begin{equation*}
\mathcal{P}(\mathbb{R}) \ni p \longmapsto p(A) \in \mathcal{B}(H) \tag{16.17}
\end{equation*}
$$

from the real polynomials to the bounded self-adjoint operators which is continuous with respect to the supremum norm on $[m, M]$. Since polynomials are dense in continuous functions on finite intervals, we see that (16.17) extends by continuity to a linear map
$\mathcal{C}([m, M]) \ni f \longmapsto f(A) \in \mathcal{B}(H),\|f(A)\| \leq\|f\|_{[m, M]}, f g(A)=f(A) g(A)$
where the multiplicativity follows by continuity together with the fact that it is true for polynomials.

Now, consider any two elements $\phi, \psi \in H$. Evaluating $f(A)$ on ϕ and pairing with ψ gives a linear map

$$
\begin{equation*}
\mathcal{C}([m, M]) \ni f \longmapsto\langle f(A) \phi, \psi\rangle \in \mathbb{C} . \tag{16.19}
\end{equation*}
$$

This is a linear functional on $\mathcal{C}([m, M])$ to which we can apply the Riesz representatin theorem and conclude that it is defined by integration
against a unique Radon measure $\mu_{\phi, \psi}$:

$$
\begin{equation*}
\langle f(A) \phi, \psi\rangle=\int_{[m, M]} f d \mu_{\phi, \psi} . \tag{16.20}
\end{equation*}
$$

The total mass $\left|\mu_{\phi, \psi}\right|$ of this measure is the norm of the functional. Since it is a Borel measure, we can take the integral on $-\infty, b]$ for any $b \in \mathbb{R}$ ad, with the uniqueness, this shows that we have a continuous sesquilinear map
$P_{b}(\phi, \psi): H \times H \ni(\phi, \psi) \longmapsto \int_{[m, b]} d \mu_{\phi, \psi} \in \mathbb{R},\left|P_{b}(\phi, \psi)\right| \leq\|A\|\|\phi\|\|\psi\|$.
From the Hilbert space Riesz representation theorem it follows that this sesquilinear form defines, and is determined by, a bounded linear operator

$$
\begin{equation*}
P_{b}(\phi, \psi)=\left\langle P_{b} \phi, \psi\right\rangle,\left\|P_{b}\right\| \leq\|A\| \tag{16.22}
\end{equation*}
$$

In fact, from the functional calculus (the multiplicativity in (16.18)) we see that

$$
\begin{equation*}
P_{b}^{*}=P_{b}, P_{b}^{2}=P_{b},\left\|P_{b}\right\| \leq 1, \tag{16.23}
\end{equation*}
$$

so P_{b} is a projection.
Thus the spectral theorem gives us an increasing (with b) family of commuting self-adjoint projections such that $\mu_{\phi, \psi}((-\infty, b])=\left\langle P_{b} \phi, \psi\right\rangle$ determines the Radon measure for which (16.20) holds. One can go further and think of P_{b} itself as determining a measure

$$
\begin{equation*}
\mu((-\infty, b])=P_{b} \tag{16.24}
\end{equation*}
$$

which takes values in the projections on H and which allows the functions of A to be written as integrals in the form

$$
\begin{equation*}
f(A)=\int_{[m, M]} f d \mu \tag{16.25}
\end{equation*}
$$

of which (16.20) becomes the 'weak form'. To do so one needs to develop the theory of such measures and the corresponding integrals. This is not so hard but I shall not do it.

