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11. Differential operators.

In the last third of the course we will apply what we have learned
about distributions, and a little more, to understand properties of dif-
ferential operators with constant coefficients. Before I start talking
about these, I want to prove another density result.

So far we have not defined a topology on S ′(Rn) – I will leave this
as an optional exercise.18 However we shall consider a notion of con-
vergence. Suppose uj ∈ S ′(Rn) is a sequence in S ′(Rn). It is said to
converge weakly to u ∈ S ′(Rn) if

(11.1) uj(ϕ) → u(ϕ) ∀ ϕ ∈ S(Rn) .

There is no ‘uniformity’ assumed here, it is rather like pointwise con-
vergence (except the linearity of the functions makes it seem stronger).

Proposition 11.1. The subspace S(Rn) ⊂ S ′(Rn) is weakly dense,
i.e., each u ∈ S ′(Rn) is the weak limit of a subspace uj ∈ S(Rn).

Proof. We can use Schwartz representation theorem to write, for some
m depending on u,

u = 〈x〉m
∑

|α|≤m

Dαuα , uα ∈ L2(Rn) .

We know that S(Rn) is dense in L2(Rn), in the sense of metric spaces
so we can find uα,j ∈ S(Rn), uα,j → uα in L2(Rn). The density result
then follows from the basic properties of weak convergence. �

Proposition 11.2. If uj → u and u′j → u′ weakly in S ′(Rn) then
cuj → cu, uj +u′j → u+u′, Dαuj → Dαu and 〈x〉muj → 〈x〉mu weakly
in S ′(Rn).

Proof. This follows by writing everyting in terms of pairings, for exam-
ple if ϕ ∈ S(Rn)

Dαuj(ϕ) = uj((−1)(α)Dαϕ) → u((−1)(α)Dαϕ) = Dαu(ϕ) .

�

This weak density shows that our definition of Dj, and xj× are
unique if we require Proposition 11.2 to hold.

We have discussed differentiation as an operator (meaning just a
linear map between spaces of function-like objects)

Dj : S ′(Rn) → S ′(Rn) .

18Problem 34.
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Any polynomial on Rn

p(ξ) =
∑

|α|≤m

pαξ
α , pα ∈ C

defines a differential operator19

(11.2) p(D)u =
∑

|α|≤m

pαD
αu .

Before discussing any general theorems let me consider some exam-
ples.

On R2, ∂ = ∂x + i∂y“d-bar operator”(11.3)

on Rn, ∆ =

n∑

j=1

D2
j“Laplacian”(11.4)

on R × Rn = Rn+1, D2
t − ∆“Wave operator”(11.5)

onR × Rn = Rn+1, ∂t + ∆“Heat operator”(11.6)

on R × Rn = Rn+1, Dt + ∆“Schrödinger operator”(11.7)

Functions, or distributions, satisfying ∂u = 0 are said to be holo-
morphic, those satisfying ∆u = 0 are said to be harmonic.

Definition 11.3. An element E ∈ S ′(Rn) satisfying

(11.8) P (D)E = δ

is said to be a (tempered) fundamental solution of P (D).

Theorem 11.4 (without proof). Every non-zero constant coefficient
differential operator has a tempered fundamental solution.

This is quite hard to prove and not as interetsing as it might seem.
We will however give lots of examples, starting with ∂. Consider the
function

(11.9) E(x, y) =
1

2π
(x+ iy)−1 , (x, y) 6= 0 .

Lemma 11.5. E(x, y) is locally integrable and so defines E ∈ S ′(R2)
by

(11.10) E(ϕ) =
1

2π

∫

R2

(x + iy)−1ϕ(x, y) dx dy ,

and E so defined is a tempered fundamental solution of ∂.

19More correctly a partial differential operator with constant coefficients.
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Proof. Since (x+iy)−1 is smooth and bounded away from the origin the
local integrability follows from the estimate, using polar coordinates,

(11.11)

∫

|(x,y)|≤1

dx dy

|x + iy|
=

∫ 2π

0

∫ 1

0

r dr dθ

r
= 2π .

Differentiating directly in the region where it is smooth,

∂x(x + iy)−1 = −(x + iy)−2 , ∂y(x + iy)−1 = −i(x ∈ iy)−2

so indeed, ∂E = 0 in (x, y) 6= 0.20

The derivative is really defined by

(∂E)(ϕ) = E(−∂ϕ)(11.12)

= lim
ε↓0

−
1

2π

∫
|x|≥ε
|y|≥ε

(x + iy)−1 ∂ϕ dx dy .

Here I have cut the space {|x| ≤ ε , |y| ≤ ε} out of the integral and used
the local integrability in taking the limit as ε ↓ 0. Integrating by parts
in x we find

−

∫
|x|≥ε
|y|≥ε

(x+ iy)−1∂xϕdx dy =

∫
|x|≥ε
|y|≥ε

(∂x(x+ iy)−1)ϕdx dy

+

∫

|y|≤ε
x=ε

(x+ iy)−1ϕ(x, y) dy −

∫

|y|≤ε
x=−ε

(x+ iy)−1ϕ(x, y) dy .

There is a corrsponding formula for integration by parts in y so,
recalling that ∂E = 0 away from (0, 0),

(11.13) 2π∂E(ϕ) =

lim
ε↓0

∫

|y|≤ε

[(ε + iy)−1ϕ(ε, y) − (−ε + iy)−1ϕ(−ε, y)] dy

+ i lim
ε↓0

∫

|x|≤ε

[(x+ iε)−1ϕ(x, ε) − (x− iε)−1ϕ(x, ε)] dx ,

assuming that both limits exist. Now, we can write

ϕ(x, y) = ϕ(0, 0) + xψ1(x1y) + yψ2(x, y) .

Replacing ϕ by either xψ1 or yψ2 in (11.13) both limits are zero. For
example

∣∣∣∣
∫

|y|≤ε

(ε+ iy)−1εψ1(ε, y) dy

∣∣∣∣ ≤
∫

|y|≤ε

|ψ1| → 0 .

20Thus at this stage we know ∂E must be a sum of derivatives of δ.
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Thus we get the same result in (11.13) by replacing ϕ(x, y) by ϕ(0, 0).
Then 2π∂E(ϕ) = cϕ(0),

c = lim
ε↓0

2ε

∫

|y|≤ε

dy

ε2 + y2
= lim

ε↓0
<

∫

|y|≤1

dy

1 + y2
= 2π .

�

Let me remind you that we have already discussed the convolution
of functions

u ∗ v(x) =

∫
u(x− y)v(y) dy = v ∗ u(x) .

This makes sense provided u is of slow growth and s ∈ S(Rn). In fact
we can rewrite the definition in terms of pairing

(11.14) (u ∗ ϕ)(x) = 〈u, ϕ(x− ·)〉

where the · indicates the variable in the pairing.

Theorem 11.6 (Hörmander, Theorem 4.1.1). If u ∈ S ′(Rn) and ϕ ∈
S(Rn) then u ∗ ϕ ∈ S ′(Rn) ∩ C∞(Rn) and if supp(ϕ) b Rn

supp(u ∗ ϕ) ⊂ supp(u) + supp(ϕ) .

For any multi-index α

Dα(u ∗ ϕ) = Dαu ∗ ϕ = u ∗Dαϕ .

Proof. If ϕ ∈ S(Rn) then for any fixed x ∈ Rn,

ϕ(x− ·) ∈ S(Rn) .

Indeed the seminorm estimates required are

sup
y

(1 + |y|2)k/2 |Dα
yϕ(x− y)| <∞ ∀ α, k > 0 .

Since Dα
yϕ(x− y) = (−1)|α|(Dαϕ)(x− y) and

(1 + |y|2) ≤ (1 + |x− y|2)(1 + |x|2)

we conclude that

‖(1 + |y|2)k/2Dα
y(x− y)‖L∞ ≤ (1 + |x|2)k/2‖〈y〉kDα

yϕ(y)‖L∞ .

The continuity of u ∈ S ′(Rn) means that for some k

|u(ϕ)| ≤ C sup
|α|≤k

‖(y)kDαϕ‖L∞

so it follows that

(11.15) |u ∗ ϕ(x)| = |〈u, ϕ(x− ·)〉| ≤ C(1 + |x|2)k/2 .
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The argument above shows that x 7→ ϕ(x−·) is a continuous function
of x ∈ Rn with values in S(Rn), so u ∗ ϕ is continuous and satisfies
(11.15). It is therefore an element of S ′(Rn).

Differentiability follows in the same way since for each j, with ej the
jth unit vector

ϕ(x+ sej − y) − ϕ(x− y)

s
∈ S(Rn)

is continuous in x ∈ Rn, s ∈ R. Thus, u ∗ ϕ has continuous partial
derivatives and

Dju ∗ ϕ = u ∗Djϕ .

The same argument then shows that u∗ϕ ∈ C∞(Rn). That Dj(u∗ϕ) =
Dju ∗ ϕ follows from the definition of derivative of distributions

Dj(u ∗ ϕ(x)) = (u ∗Djϕ)(x)

= 〈u,Dxj
ϕ(x− y)〉 = −〈u(y), Dyj

ϕ(x− y)〉y

= (Dju) ∗ ϕ .

Finally consider the support property. Here we are assuming that
supp(ϕ) is compact; we also know that supp(u) is a closed set. We
have to show that

(11.16) x /∈ supp(u) + supp(ϕ)

implies u ∗ ϕ(x′) = 0 for x′ near x. Now (11.16) just means that

(11.17) suppϕ(x− ·) ∩ supp(u) = φ ,

Since suppϕ(x − ·) = {y ∈ Rn; x− y ∈ supp(ϕ)}, so both statements
mean that there is no y ∈ supp(ϕ) with x−y ∈ supp(u). This can also
be written

supp(ϕ) ∩ supp u(x− ·) = φ

and as we showed when discussing supports implies

u ∗ ϕ(x′) = 〈u(x′ − ·), ϕ〉 = 0 .

From (11.17) this is an open condition on x′, so the support property
follows.

�

Now suppose ϕ, ψ ∈ S(Rn) and u ∈ S ′(Rn). Then

(11.18) (u ∗ ϕ) ∗ ψ = u ∗ (ϕ ∗ ψ) .

This is really Hörmander’s Lemma 4.1.3 and Theorem 4.1.2; I ask you
to prove it as Problem 35.

We have shown that u ∗ ϕ is C∞ if u ∈ S ′(Rn) and ϕ ∈ S(Rn),
i.e., the regularity of u ∗ ϕ follows from the regularity of one of the
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factors. This makes it reasonable to expect that u ∗ v can be defined
when u ∈ S ′(Rn), v ∈ S ′(Rn) and one of them has compact support.
If v ∈ C∞

c (Rn) and ϕ ∈ S(Rn) then

u ∗ v(ϕ) =

∫
〈u(·), v(x− ·)〉ϕ(x) dx =

∫
〈u(·), v(x− ·)〉v̌ϕ(−x) dx

where ϕ̌(z) = ϕ(−z). In fact using Problem 35,

(11.19) u ∗ v(ϕ) = ((u ∗ v) ∗ ϕ̌)(0) = (u ∗ (v ∗ ϕ̌))(0) .

Here, v, ϕ are both smooth, but notice

Lemma 11.7. If v ∈ S ′(Rn) has compact support and ϕ ∈ S(Rn) then
v ∗ ϕ ∈ S(Rn).

Proof. Since v ∈ S ′(Rn) has compact support there exists χ ∈ C∞
c (Rn)

such that χv = v. Then

v ∗ ϕ(x) = (χv) ∗ ϕ(x) = 〈χv(y), ϕ(x− y)〉y

= 〈u(y), χ(y)ϕ(x− y)〉y .

Thus, for some k,

|v ∗ ϕ(x)| ≤ C‖χ(y)ϕ(x− y)‖(k)

where ‖ ‖(k) is one of our norms on S(Rn). Since χ is supported in
some large ball,

‖χ(y)ϕ(x− y)‖(k)

≤ sup
|α|≤k

∣∣〈y〉kDα
y(χ(y)ϕ(x− y))

∣∣

≤ C sup
|y|≤R

sup
|α|≤k

|(Dαϕ)(x− y)|

≤ CN sup
|y|≤R

(1 + |x− y|2)−N/2

≤ CN(1 + |x|2)−N/2 .

Thus (1 + |x|2)N/2 |v ∗ ϕ| is bounded for each N . The same argument
applies to the derivative using Theorem 11.6, so

v ∗ ϕ ∈ S(Rn) .

�

In fact we get a little more, since we see that for each k there exists
k′ and C (depending on k and v) such that

‖v ∗ ϕ‖(k) ≤ C‖ϕ‖(k′) .
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This means that
v∗ : S(Rn) → S(Rn)

is a continuous linear map.
Now (11.19) allows us to define u∗v when u ∈ S ′(Rn) and v ∈ S ′(Rn)

has compact support by

u ∗ v(ϕ) = u ∗ (v ∗ ϕ̌)(0) .

Using the continuity above, I ask you to check that u ∗ v ∈ S ′(Rn) in
Problem 36. For the moment let me assume that this convolution has
the same properties as before – I ask you to check the main parts of
this in Problem 37.

Recall that E ∈ S ′(Rn) is a fundamental situation for P (D), a con-
stant coefficient differential operator, if P (D)E = δ. We also use a
weaker notion.

Definition 11.8. A parametrix for a constant coefficient differential
operator P (D) is a distribution F ∈ S ′(Rn) such that

(11.20) P (D)F = δ + ψ , ψ ∈ C∞(Rn) .

An operator P (D) is said to be hypoelliptic if it has a parametrix sat-
isfying

(11.21) sing supp(F ) ⊂ {0} ,

where for any u ∈ S ′(Rn)

(11.22) (sing supp(u)){ = {x ∈ Rn; ∃ϕ ∈ C∞
c (Rn) ,

ϕ(x) 6= 0, ϕu ∈ C∞
c (Rn)} .

Since the same ϕ must work for nearby points in (11.22), the set
sing supp(u) is closed. Furthermore

(11.23) sing supp(u) ⊂ supp(u) .

As Problem 37 I ask you to show that ifK b Rn andK∩sing supp(u) =
φ the ∃ ϕ ∈ C∞

c (Rn) with ϕ(x) = 1 in a neighbourhood of K such that
ϕu ∈ C∞

c (Rn). In particular

(11.24) sing supp(u) = φ⇒ u ∈ S ′(Rn) ∩ C∞(Rn) .

Theorem 11.9. If P (D) is hypoelliptic then

(11.25) sing supp(u) = sing supp(P (D)u) ∀ u ∈ S ′(Rn) .

Proof. One half of this is true for any differential operator:

Lemma 11.10. If u ∈ S ′(Rn) then for any polynomial

(11.26) sing supp(P (D)u) ⊂ sing supp(u) ∀ u ∈ S ′(Rn) .
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�

Proof. We must show that x /∈ sing supp(u) ⇒ x /∈ sing supp(P (D)u).
Now, if x /∈ sing supp(u) we can find ϕ ∈ C∞

c (Rn), ϕ ≡ 1 near x, such
that ϕu ∈ C∞

c (Rn). Then

P (D)u = P (D)(ϕu+ (1 − ϕ)u)

= P (D)(ϕu) + P (D)((1 − ϕ)u) .

The first term is C∞ and x /∈ supp(P (D)((1−ϕ)u)), so x /∈ sing supp(P (D)u).
�

It remains to show the converse of (11.26) where P (D) is assumed to
be hypoelliptic. Take F , a parametrix for P (D) with sing supp u ⊂ {0}
and assume, or rather arrange, that F have compact support. In fact
if x /∈ sing supp(P (D)u) we can arrange that

(supp(F ) + x) ∩ sing supp(P (D)u) = φ .

Now P (D)F = δψ with ψ ∈ C∞
c (Rn) so

u = δ ∗ u = (P (D)F ) ∗ u− ψ ∗ u.

Since ψ ∗ u ∈ C∞ it suffices to show that x̄ /∈ sing supp ((P (D)u) ∗ f) .
Take ϕ ∈ C∞

c (Rn) with ϕf ∈ C∞, f = P (D)u but

(suppF + x) ∩ supp(ϕ) = 0 .

Then f = f1 + f2, f1 = ϕf ∈ C∞
c (Rn) so

f ∗ F = f1 ∗ F + f2 ∗ F

where f1 ∗ F ∈ C∞(Rn) and x /∈ supp(f2 ∗ F ). It follows that x /∈
sing supp(u).

Example 11.1. If u is holomorphic on Rn, ∂u = 0, then u ∈ C∞(Rn).

Recall from last time that a differential operator P (D) is said to be
hypoelliptic if there exists F ∈ S ′(Rn) with

(11.27) P (D)F − δ ∈ C∞(Rn) and sing supp(F ) ⊂ {0} .

The second condition here means that if ϕ ∈ C∞
c (Rn) and ϕ(x) = 1 in

|x| < ε for some ε > 0 then (1−ϕ)F ∈ C∞(Rn). Since P (D)((1−ϕ)F ) ∈
C∞(Rn) we conclude that

P (D)(ϕF )− δ ∈ C∞
c (Rn)

and we may well suppose that F , replaced now by ϕF , has compact
support. Last time I showed that

If P (D) is hypoelliptic and u ∈ S ′(Rn) then

sing supp(u) = sing supp(P (D)u) .
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I will remind you of the proof later.
First however I want to discuss the important notion of ellipticity.

Remember that P (D) is ‘really’ just a polynomial, called the charac-
teristic polynomial

P (ξ) =
∑

|α|≤m

Cαξ
α .

It has the property

P̂ (D)u(ξ) = P (ξ)û(ξ) ∀ u ∈ S ′(Rn) .

This shows (if it isn’t already obvious) that we can remove P (ξ) from
P (D) thought of as an operator on S ′(Rn).

We can think of inverting P (D) by dividing by P (ξ). This works
well provided P (ξ) 6= 0, for all ξ ∈ Rn. An example of this is

P (ξ) = |ξ|2 + 1 =
n∑

j=1

+1 .

However even the Laplacian, ∆ =
∑n

j=1D
2
j , does not satisfy this rather

stringent condition.
It is reasonable to expect the top order derivatives to be the most

important. We therefore consider

Pm(ξ) =
∑

|α|=m

Cαξ
α

the leading part, or principal symbol, of P (D).

Definition 11.11. A polynomial P (ξ), or P (D), is said to be elliptic
of order m provided Pm(ξ) 6= 0 for all 0 6= ξ ∈ Rn.

So what I want to show today is

Theorem 11.12. Every elliptic differential operator P (D) is hypoel-
liptic.

We want to find a parametrix for P (D); we already know that we
might as well suppose that F has compact support. Taking the Fourier

transform of (11.27) we see that F̂ should satisfy

(11.28) P (ξ)F̂ (ξ) = 1 + ψ̂, ψ̂ ∈ S(Rn) .

Here we use the fact that ψ ∈ C∞
c (Rn) ⊂ S(Rn), so ψ̂ ∈ S(Rn) too.

First suppose that P (ξ) = Pm(ξ) is actually homogeneous of degree
m. Thus

Pm(ξ) = |ξ|m Pm(ξ̂), ξ̂ = ξ/ |ξ| , ξ 6= 0 .
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The assumption at ellipticity means that

(11.29) Pm(ξ̂) 6= 0 ∀ ξ̂ ∈ Sn−1 = {ξ ∈ Rn; |ξ| = 1} .

Since Sn−1 is compact and Pm is continuous

(11.30)
∣∣∣Pm(ξ̂)

∣∣∣ ≥ C > 0 ∀ ξ̂ ∈ Sn−1 ,

for some constant C. Using homogeneity

(11.31)
∣∣∣Pm(ξ̂)

∣∣∣ ≥ C |ξ|m , C > 0 ∀ ξ ∈ Rn .

Now, to get F̂ from (11.28) we want to divide by Pm(ξ) or multiply
by 1/Pm(ξ). The only problem with defining 1/Pm(ξ) is at ξ = 0. We
shall simply avoid this unfortunate point by choosing P ∈ C∞

c (Rn) as
before, with ϕ(ξ) = 1 in |ξ| ≤ 1.

Lemma 11.13. If Pm(ξ) is homogeneous of degree m and elliptic then

(11.32) Q(ξ) =
(1 − ϕ(ξ))

Pm(ξ)
∈ S ′(Rn)

is the Fourier transform of a parametrix for Pm(D), satisfying (11.27).

Proof. ClearlyQ(ξ) is a continuous function and |Q(ξ)| ≤ C(1+|ξ|)−m ∀ ξ ∈
Rn, so Q ∈ S ′(Rn). It therefore is the Fourier transform of some
F ∈ S ′(Rn). Furthermore

̂Pm(D)F (ξ) = Pm(ξ)F̂ = Pm(ξ)Q(ξ)

= 1 − ϕ(ξ) ,

⇒ Pm(D)F = δ + ψ , ψ̂(ξ) = −ϕ(ξ) .

Since ϕ ∈ C∞
c (Rn) ⊂ S(Rn), ψ ∈ S(Rn) ⊂ C∞(Rn). Thus F is a

parametrix for Pm(D). We still need to show the ‘hard part’ that

(11.33) sing supp(F ) ⊂ {0} .

�

We can show (11.33) by considering the distributions xαF . The idea
is that for |α| large, xα vanishes rather rapidly at the origin and this
should ‘weaken’ the singularity of F there. In fact we shall show that

(11.34) xαF ∈ H |α|+m−n−1(Rn) , |α| > n + 1 −m .

If you recall, these Sobolev spaces are defined in terms of the Fourier
transform, namely we must show that

x̂αF ∈ 〈ξ〉−|α|−m+n+1L2(Rn) .
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Now x̂αF = (−1)|α|Dα
ξF̂ , so what we need to cinsider is the behaviour

of the derivatives of F̂ , which is just Q(ξ) in (11.32).

Lemma 11.14. Let P (ξ) be a polynomial of degree m satisfying

(11.35) |P (ξ)| ≥ C |ξ|m in |ξ| > 1/C for some C > 0 ,

then for some constants Cα

(11.36)

∣∣∣∣Dα 1

P (ξ)

∣∣∣∣ ≤ Cα |ξ|
−m−|α| in |ξ| > 1/C .

Proof. The estimate in (11.36) for α = 0 is just (11.35). To prove the
higher estimates that for each α there is a polynomial of degree at most
(m− 1) |α| such that

(11.37) Dα 1

P (ξ)
=

Lα(ξ)

(P (ξ))1+|α|
.

Once we know (11.37) we get (11.36) straight away since
∣∣∣∣Dα 1

P (ξ)

∣∣∣∣ ≤
C ′

α |ξ|
(m−1)|α|

C1+|α| |ξ|m(1+|α|)
≤ Cα |ξ|

−m−|α| .

We can prove (11.37) by induction, since it is certainly true for α = 0.
Suppose it is true for |α| ≤ k. To get the same identity for each β with
|β| = k+1 it is enough to differentiate one of the identities with |α| = k
once. Thus

Dβ 1

P (ξ)
= DjD

α 1

P (ξ)
=
DjLα(ξ)

P (ξ)1+|α|
−

(1 + |α|)LαDjP (ξ)

(P (ξ))2+|α|
.

Since Lβ(ξ) = P (ξ)DjLα(ξ)− (1 + |α|)Lα(ξ)DjP (ξ) is a polynomial of
degree at most (m−1) |α|+m−1 = (m−1) |β| this proves the lemma.

�

Going backwards, observe that Q(ξ) = 1−ϕ
Pm(ξ)

is smooth in |ξ| ≤ 1/C,

so (11.36) implies that

|DαQ(ξ)| ≤ Cα(1 + |ξ|)−m−|α|(11.38)

⇒ 〈ξ〉`DαQ ∈ L2(Rn) if `−m− |α| < −
n

2
,

which certainly holds if ` = |α| + m − n − 1, giving (11.34). Now, by
Sobolev’s embedding theorem

xαF ∈ Ck if |α| > n+ 1 −m+ k +
n

2
.



78 RICHARD B. MELROSE

In particular this means that if we choose µ ∈ C∞
c (Rn) with 0 /∈ supp(µ)

then for every k, µ/ |x|2k is smooth and

µF =
µ

|x|2k
|x|2k F ∈ C2`−2n , ` > n .

Thus µF ∈ C∞
c (Rn) and this is what we wanted to show, sing supp(F ) ⊂

{0}.
So now we have actually proved that Pm(D) is hypoelliptic if it is

elliptic. Rather than go through the proof again to make sure, let me
go on to the general case and in doing so review it.

Proof. Proof of theorem. We need to show that if P (ξ) is elliptic then
P (D) has a parametrix F as in (11.27). From the discussion above the
ellipticity of P (ξ) implies (and is equivalent to)

|Pm(ξ)| ≥ c |ξ|m , c > 0 .

On the other hand

P (ξ) − Pm(ξ) =
∑

|α|<m

Cαξ
α

is a polynomial of degree at most m− 1, so

|P (ξ) − Pm(ξ)| 2 ≤ C ′(1 + |ξ|)m−1 .

This means that id C > 0 is large enough then in |ξ| > C, C ′(1 +
|ξ|)m−1 < c

2
|ξ|m, so

|P (ξ)| ≥ |Pm(ξ)| − |P (ξ) − Pm(ξ)|

≥ c |ξ|m − C ′(1 + |ξ|)m−1 ≥
c

2
|ξ|m .

This means that P (ξ) itself satisfies the conditions of Lemma 11.14.
Thus if ϕ ∈ C∞

c (Rn) is equal to 1 in a large enough ball then Q(xi) =
(1 − ϕ(ξ))/P (ξ) in C∞ and satisfies (11.36) which can be written

|DαQ(ξ)| ≤ Cα(1 + |ξ|)m−|α| .

The discussion above now shows that defining F ∈ S ′(Rn) by F̂ (ξ) =
Q(ξ) gives a solution to (11.27).

�

The last step in the proof is to show that if F ∈ S ′(Rn) has compact
support, and satisfies (11.27), then

u ∈ S(Rn) , P (D)u ∈ S ′(Rn) ∩ C∞(Rn)

⇒ u = F ∗ (P (D)u)− ψ ∗ u ∈ C∞(Rn) .

Let me refine this result a little bit.
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Proposition 11.15. If f ∈ S ′(Rn) and µ ∈ S ′(Rn) has compact sup-
port then

sing supp(u ∗ f) ⊂ sing supp(u) + sing supp(f).

Proof. We need to show that p /∈ sing supp(u) ∈ sing supp(f) then
p /∈ sing supp(u ∗ f). Once we can fix p, we might as well suppose that
f has compact support too. Indeed, choose a large ball B(R, 0) so that

z /∈ B(0, R) ⇒ p /∈ supp(u) +B(0, R) .

This is possible by the assumed boundedness of supp(u). Then choose
ϕ ∈ C∞

c (Rn) with ϕ = 1 on B(0, R); it follows from Theorem L16.2, or
rather its extension to distributions, that φ /∈ supp(u(1 − ϕ)f), so we
can replace f by ϕf , noting that sing supp(ϕf) ⊂ sing supp(f). Now if
f has compact support we can choose compact neighbourhoods K1, K2

of sing supp(u) and sing supp(f) such that p /∈ K1 +K2. Furthermore
we an decompose u = u1 + u2, f = f1 + f2 so that supp(u1) ⊂ K1,
supp(f2) ⊂ K2 and u2, f2 ∈ C∞(Rn). It follows that

u ∗ f = u1 ∗ f1 + u2 ∗ f2 + u1 ∗ f2 + u2 ∗ f2 .

Now, p /∈ supp(u1 ∗f1), by the support property of convolution and the
three other terms are C∞, since at least one of the factors is C∞. Thus
p /∈ sing supp(u ∗ f). �

The most important example of a differential operator which is hy-
poelliptic, but not elliptic, is the heat operator

(11.39) ∂t + ∆ = ∂t −

n∑

j=1

∂2
xj
.

In fact the distribution

E(t, x) =

{
1

(4πt)n/2
exp

(
− |x|2

4t

)
t ≥ 0

0 t ≤ 0
(11.40)

is a fundamental solution. First we need to check that E is a distri-
bution. Certainly E is C∞ in t > 0. Moreover as t ↓ 0 in x 6= 0 it
vanishes with all derivatives, so it is C∞ except at t = 0, x = 0. Since
it is clearly measurable we will check that it is locally integrable near
the origin, i.e.,

(11.41)

∫
0≤t≤1
|x|≤1

E(t, x) dx dt <∞ ,
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since E ≥ 0. We can change variables, setting X = x/t1/2, so dx =
tn/2 dX and the integral becomes

1

(4π)n/2

∫ ′

0

∫

|X|≤t−1/2

exp(−
|X|2

4
) dx dt <∞ .

Since E is actually bounded near infinity, it follows that E ∈ S ′Rn,

E(ϕ) =

∫

t≥0

E(t, x)ϕ(t, x) dx dt ∀ ϕ ∈ S(Rn+1) .

As before we want to compute

(∂t + ∆)E(ϕ) = E(−∂tϕ+ ∆ϕ)(11.42)

= lim
E↓0

∫ ∞

E

∫

Rn

E(t, x)(−∂tϕ+ ∆ϕ) dx dt .

First we check that (∂t + ∆)E = 0 in t > 0, where it is a C∞ function.
This is a straightforward computation:

∂tE = −
n

2t
E +

|x|2

4t2
E

∂xj
E = −

xj

2t
E , ∂2

xj
E = −

1

2t
E +

x2
j

4t2
E

⇒ ∆E =
n

2t
E +

|x|2

4t2
E .

Now we can integrate by parts in (11.42) to get

(∂t + ∆)E(ϕ) = lim
E↓0

∫

Rn

ϕ(E , x)
e−|x|2/4E

(4πE)n/2
dx .

Making the same change of variables as before, X = x/2E 1/2,

(∂t + ∆)E(ϕ) = lim
E↓0

∫

Rn

ϕ(E , E1/2X)
e−|x|2

πn/2
dX .

As E ↓ 0 the integral here is bounded by the integrable function
C exp(− |X|2), for some C > 0, so by Lebesgue’s theorem of domi-
nated convergence, conveys to the integral of the limit. This is

ϕ(0, 0) ·

∫

Rn

e−|x|2 dx

πn/2
= ϕ(0, 0) .

Thus
(∂t + ∆)E(ϕ) = ϕ(0, 0) ⇒ (∂t + ∆)E = δtδx ,

so E is indeed a fundamental solution. Since it vanishes in t < 0 it is
canned a forward fundamrntal solution.

Let’s see what we can use it for.
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Proposition 11.16. If f ∈ S ′Rn has compact support ∃ !u ∈ S ′Rn

with supp(m) ⊂ {t ≥ −T} for some T and

(11.43) (∂t + ∆)u = f in Rn+1 .

Proof. Naturally we try u = E ∗f . That it satisfies (11.43)follows from
the properties of convolution. Similarly if T is such that supp(f) ⊂
{t ≥ T} then

supp(u) ⊂ supp(f) + supp(E) ⊂ {t ≥ T ] .

So we need to show uniqueness. If u1, u2 ∈ S ′Rn in two solutions of
(11.43) then their difference v = u1 − u2 satisfies the ‘homogeneous’
equation (∂t + ∆)v = 0. Furthermore, v = 0 in t < T ′ for some T ′.
Given any E ∈ R choose ϕ(t) ∈ C∞(R) with ϕ(t) = 0 in t > t + 1,
ϕ(t) = 1 in t < t and consider

Et = ϕ(t)E = F1 + F2 ,

where F1 = ψEt for some ψ ∈ C∞
c Rn+1), ψ = 1 near 0. Thus F1 has

comapct support and in fact F2 ∈ SRn. I ask you to check this last
statement as Problem L18.P1.

Anyway,

(∂t + ∆)(F1 + F2) = δ + ψ ∈ SRn , ψt = 0 t ≤ t .

Now,

(∂t + ∆)(Et ∗ u) = 0 = u+ ψt ∗ u .

Since supp(ψt) ⊂
{
t ≥ t ], the second tier here is supported in t ≥ t ≥

T ′. Thus u = 0 in t < t + T ′, but t is arbitrary, so u = 0. �

Notice that the assumption that u ∈ S ′Rn is not redundant in the
statement of the Proposition, if we allow “large” solutions they be-
come non-unique. Problem L18.P2 asks you to apply the fundamental
solution to solve the initial value problem for the heat operator.

Next we make similar use of the fundamental solution for Laplace’s
operator. If n ≥ 3 the

(11.44) E = Cn |x|
−n+2

is a fundamental solution. You should check that ∆En = 0 in x 6= 0
directly, I will show later that ∆En = δ, for the appropriate choice of
Cn, but you can do it directly, as in the case n = 3.

Theorem 11.17. If f ∈ SRn ∃ !u ∈ C∞
0 Rn such that ∆u = f.
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Proof. Since convolution u = E ∗ f ∈ S ′Rn ∩ C∞Rn is defined we
certainly get a solution to ∆u = f this way. We need to check that
u ∈ C∞

0 Rn. First we know that ∆ is hypoelliptic so we can decompose

E = F1 + F2 , F1 ∈ S ′Rn , suppF,b Rn

and then F2 ∈ C∞Rn. In fact we can see from (11.44) that

|DαF2(x)| ≤ Cα(1 + |x|)−n+2−|α| .

Now, F1 ∗ f ∈ SRn, as we showed before, and continuing the integral
we see that

|Dαu| ≤ |DαF2 ∗ f | + CN(1 + |x|)−N ∀ N

≤ C ′
α(1 + |x|)−n+2−|α| .

Since n > 2 it follows that u ∈ C∞
0 Rn.

So only the uniqueness remains. If there are two solutions, u1, u2 for
a given f then v = u1 − u2 ∈ C∞

0 Rn satisfies ∆v = 0. Since v ∈ S ′Rn

we can take the Fourier transform and see that

|χ|2 v̂(χ) = 0 ⇒ supp(v̂) ⊂ {0} .

an earlier problem was to conclude from this that v̂ =
∑

|α|≤m CαD
αδ

for some constants Cα. This in turn implies that v is a polynomial.
However the only polynomials in C0

0Rn are identically 0. Thus v = 0
and uniqueness follows. �


