10. Sobolev embedding

The properties of Sobolev spaces are briefly discussed above. If m is a positive integer then $u \in H^{m}\left(\mathbb{R}^{n}\right)$ 'means' that u has up to m derivatives in $L^{2}\left(\mathbb{R}^{n}\right)$. The question naturally arises as to the sense in which these 'weak' derivatives correspond to old-fashioned 'strong' derivatives. Of course when m is not an integer it is a little harder to imagine what these 'fractional derivatives' are. However the main result is:

Theorem 10.1 (Sobolev embedding). If $u \in H^{m}\left(\mathbb{R}^{n}\right)$ where $m>n / 2$ then $u \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$, i.e.,

$$
\begin{equation*}
H^{m}\left(\mathbb{R}^{n}\right) \subset \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right), m>n / 2 \tag{10.1}
\end{equation*}
$$

Proof. By definition, $u \in H^{m}\left(\mathbb{R}^{n}\right)$ means $v \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\langle\xi\rangle^{m} \hat{u}(\xi) \in$ $L^{2}\left(\mathbb{R}^{n}\right)$. Suppose first that $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. The Fourier inversion formula shows that

$$
\begin{aligned}
(2 \pi)^{n}|u(x)| & =\left|\int e^{i x \cdot \xi} \hat{u}(\xi) d \xi\right| \\
& \leq\left(\int_{\mathbb{R}^{n}}\langle\xi\rangle^{2 m}|\hat{u}(\xi)|^{2} d \xi\right)^{1 / 2} \cdot\left(\sum_{\mathbb{R}^{n}}\langle\xi\rangle^{-2 m} d \xi\right)^{1 / 2}
\end{aligned}
$$

Now, if $m>n / 2$ then the second integral is finite. Since the first integral is the norm on $H^{m}\left(\mathbb{R}^{n}\right)$ we see that

$$
\begin{equation*}
\sup _{\mathbb{R}^{n}}|u(x)|=\|u\|_{L^{\infty}} \leq(2 \pi)^{-n}\|u\|_{H^{m}}, m>n / 2 \tag{10.2}
\end{equation*}
$$

This is all for $u \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, but $\mathcal{S}\left(\mathbb{R}^{n}\right) \hookrightarrow H^{m}\left(\mathbb{R}^{n}\right)$ is dense. The estimate (10.2) shows that if $u_{j} \rightarrow u$ in $H^{m}\left(\mathbb{R}^{n}\right)$, with $u_{j} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, then $u_{j} \rightarrow u^{\prime}$ in $\mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$. In fact $u^{\prime}=u$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ since $u_{j} \rightarrow u$ in $L^{2}\left(\mathbb{R}^{n}\right)$ and $u_{j} \rightarrow u^{\prime}$ in $\mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$ both imply that $\int u_{j} \varphi$ converges, so

$$
\int_{\mathbb{R}^{n}} u_{j} \varphi \rightarrow \int_{\mathbb{R}^{n}} u \varphi=\int_{\mathbb{R}^{n}} u^{\prime} \varphi \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Notice here the precise meaning of $u=u^{\prime}, u \in H^{m}\left(\mathbb{R}^{n}\right) \subset L^{2}\left(\mathbb{R}^{n}\right)$, $u^{\prime} \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$. When identifying $u \in L^{2}\left(\mathbb{R}^{n}\right)$ with the corresponding tempered distribution, the values on any set of measure zero 'are lost'. Thus as functions (10.1) means that each $u \in H^{m}\left(\mathbb{R}^{n}\right)$ has a representative $u^{\prime} \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$.

We can extend this to higher derivatives by noting that

Proposition 10.2. If $u \in H^{m}\left(\mathbb{R}^{n}\right), m \in \mathbb{R}$, then $D^{\alpha} u \in H^{m-|\alpha|}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
D^{\alpha}: H^{m}\left(\mathbb{R}^{n}\right) \rightarrow H^{m-|\alpha|}\left(\mathbb{R}^{n}\right) \tag{10.3}
\end{equation*}
$$

is continuous.
Proof. First it is enough to show that each D_{j} defines a continuous linear map

$$
\begin{equation*}
D_{j}: H^{m}\left(\mathbb{R}^{n}\right) \rightarrow H^{m-1}\left(\mathbb{R}^{n}\right) \forall j \tag{10.4}
\end{equation*}
$$

since then (10.3) follows by composition.
If $m \in \mathbb{R}$ then $u \in H^{m}\left(\mathbb{R}^{n}\right)$ means $\hat{u} \in\langle\xi\rangle^{-m} L^{2}\left(\mathbb{R}^{n}\right)$. Since $\widehat{D_{j} u}=$ $\xi_{j} \cdot \hat{u}$, and

$$
\left|\xi_{j}\right|\langle\xi\rangle^{-m} \leq C_{m}\langle\xi\rangle^{-m+1} \forall m
$$

we conclude that $D_{j} u \in H^{m-1}\left(\mathbb{R}^{n}\right)$ and

$$
\left\|D_{j} u\right\|_{H^{m-1}} \leq C_{m}\|u\|_{H^{m}}
$$

Applying this result we see
Corollary 10.3. If $k \in \mathbb{N}_{0}$ and $m>\frac{n}{2}+k$ then

$$
\begin{equation*}
H^{m}\left(\mathbb{R}^{n}\right) \subset \mathcal{C}_{0}^{k}\left(\mathbb{R}^{n}\right) \tag{10.5}
\end{equation*}
$$

Proof. If $|\alpha| \leq k$, then $D^{\alpha} u \in H^{m-k}\left(\mathbb{R}^{n}\right) \subset \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)$. Thus the 'weak derivatives' $D^{\alpha} u$ are continuous. Still we have to check that this means that u is itself k times continuously differentiable. In fact this again follows from the density of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ in $H^{m}\left(\mathbb{R}^{n}\right)$. The continuity in (10.3) implies that if $u_{j} \rightarrow u$ in $H^{m}\left(\mathbb{R}^{n}\right), m>\frac{n}{2}+k$, then $u_{j} \rightarrow u^{\prime}$ in $\mathcal{C}_{0}^{k}\left(\mathbb{R}^{n}\right)$ (using its completeness). However $u=u^{\prime}$ as before, so $u \in \mathcal{C}_{0}^{k}\left(\mathbb{R}^{n}\right)$.

In particular we see that

$$
\begin{equation*}
H^{\infty}\left(\mathbb{R}^{n}\right)=\bigcap_{m} H^{m}\left(\mathbb{R}^{n}\right) \subset \mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right) \tag{10.6}
\end{equation*}
$$

These functions are not in general Schwartz test functions.
Proposition 10.4. Schwartz space can be written in terms of weighted Sobolev spaces

$$
\begin{equation*}
\mathcal{S}\left(\mathbb{R}^{n}\right)=\bigcap_{k}\langle x\rangle^{-k} H^{k}\left(\mathbb{R}^{n}\right) \tag{10.7}
\end{equation*}
$$

Proof. This follows directly from (10.5) since the left side is contained in

$$
\bigcap_{k}\langle x\rangle^{-k} \mathcal{C}_{0}^{k-n}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Theorem 10.5 (Schwartz representation). Any tempered distribution can be written in the form of a finite sum

$$
\begin{equation*}
u=\sum_{\substack{|\alpha| \leq m \\|\beta| \leq m}} x^{\alpha} D_{x}^{\beta} u_{\alpha \beta}, u_{\alpha \beta} \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right) \tag{10.8}
\end{equation*}
$$

or in the form

$$
\begin{equation*}
u=\sum_{\substack{|\alpha| \leq m \\|\beta| \leq m}} D_{x}^{\beta}\left(x^{\alpha} v_{\alpha \beta}\right), v_{\alpha \beta} \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right) \tag{10.9}
\end{equation*}
$$

Thus every tempered distribution is a finite sum of derivatives of continuous functions of poynomial growth.

Proof. Essentially by definition any $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is continuous with respect to one of the norms $\left\|\langle x\rangle^{k} \varphi\right\|_{\mathcal{C}^{k}}$. From the Sobolev embedding theorem we deduce that, with $m>k+n / 2$,

$$
|u(\varphi)| \leq C\left\|\langle x\rangle^{k} \varphi\right\|_{H^{m}} \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) .
$$

This is the same as

$$
\left|\langle x\rangle^{-k} u(\varphi)\right| \leq C\|\varphi\|_{H^{m}} \forall \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right) .
$$

which shows that $\langle x\rangle^{-k} u \in H^{-m}\left(\mathbb{R}^{n}\right)$, i.e., from Proposition 9.8,

$$
\langle x\rangle^{-k} u=\sum_{|\alpha| \leq m} D^{\alpha} u_{\alpha}, u_{\alpha} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

In fact, choose $j>n / 2$ and consider $v_{\alpha} \in H^{j}\left(\mathbb{R}^{n}\right)$ defined by $\hat{v}_{\alpha}=$ $\langle\xi\rangle^{-j} \hat{u}_{\alpha}$. As in the proof of Proposition 9.14 we conclude that

$$
u_{\alpha}=\sum_{|\beta| \leq j} D^{\beta} u_{\alpha, \beta}^{\prime}, u_{\alpha, \beta}^{\prime} \in H^{j}\left(\mathbb{R}^{n}\right) \subset \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right)
$$

Thus, ${ }^{17}$

$$
\begin{equation*}
u=\langle x\rangle^{k} \sum_{|\gamma| \leq M} D_{\alpha}^{\gamma} v_{\gamma}, v_{\gamma} \in \mathcal{C}_{0}^{0}\left(\mathbb{R}^{n}\right) \tag{10.10}
\end{equation*}
$$

To get (10.9) we 'commute' the factor $\langle x\rangle^{k}$ to the inside; since I have not done such an argument carefully so far, let me do it as a lemma.

[^0]Lemma 10.6. For any $\gamma \in \mathbb{N}_{0}^{n}$ there are polynomials $p_{\alpha, \gamma}(x)$ of degrees at most $|\gamma-\alpha|$ such that

$$
\langle x\rangle^{k} D^{\gamma} v=\sum_{\alpha \leq \gamma} D^{\gamma-\alpha}\left(p_{\alpha, \gamma}\langle x\rangle^{k-2|\gamma-\alpha|} v\right) .
$$

Proof. In fact it is convenient to prove a more general result. Suppose p is a polynomial of a degree at most j then there exist polynomials of degrees at most $j+|\gamma-\alpha|$ such that

$$
\begin{equation*}
p\langle x\rangle^{k} D^{\gamma} v=\sum_{\alpha \leq \gamma} D^{\gamma-\alpha}\left(p_{\alpha, \gamma}\langle x\rangle^{k-2|\gamma-\alpha|} v\right) \tag{10.11}
\end{equation*}
$$

The lemma follows from this by taking $p=1$.
Furthermore, the identity (10.11) is trivial when $\gamma=0$, and proceeding by induction we can suppose it is known whenever $|\gamma| \leq L$. Taking $|\gamma|=L+1$,

$$
D^{\gamma}=D_{j} D^{\gamma^{\prime}}\left|\gamma^{\prime}\right|=L
$$

Writing the identity for γ^{\prime} as

$$
p\langle x\rangle^{k} D^{\gamma^{\prime}}=\sum_{\alpha^{\prime} \leq \gamma^{\prime}} D^{\gamma^{\prime}-\alpha^{\prime}}\left(p_{\alpha^{\prime}, \gamma^{\prime}}\langle x\rangle^{k-2\left|\gamma^{\prime}-\alpha^{\prime}\right|} v\right)
$$

we may differentiate with respect to x_{j}. This gives

$$
\begin{array}{r}
p\langle x\rangle^{k} D^{\gamma}=-D_{j}\left(p\langle x\rangle^{k}\right) \cdot D^{\gamma^{\prime}} v \\
+\sum_{\left|\alpha^{\prime}\right| \leq \gamma} D^{\gamma-\alpha^{\prime}}\left(p_{\alpha^{\prime}, \gamma^{\prime}}^{\prime}\langle x\rangle^{k-2|\gamma-\alpha|+2} v\right)
\end{array}
$$

The first term on the right expands to

$$
\left(-\left(D_{j} p\right) \cdot\langle x\rangle^{k} D^{\gamma^{\prime}} v-\frac{1}{i} k p x_{j}\langle x\rangle^{k-2} D^{\gamma^{\prime}} v\right) .
$$

We may apply the inductive hypothesis to each of these terms and rewrite the result in the form (10.11); it is only necessary to check the order of the polynomials, and recall that $\langle x\rangle^{2}$ is a polynomial of degree 2.

Applying Lemma 10.6 to (10.10) gives (10.9), once negative powers of $\langle x\rangle$ are absorbed into the continuous functions. Then (10.8) follows from (10.9) and Leibniz's formula.

[^0]: ${ }^{17}$ This is probably the most useful form of the representation theorem!

