Problem set 2: Due September 28

From Notes: Problems 6, 11, 12, 13, 14.
Problem 1 Show that the smallest σ-algebra containing the sets

$$
(a, \infty] \subset[-\infty, \infty]
$$

for all $a \in \mathbb{R}$, is what is called above the 'Borel' σ-algebra on $[-\infty, \infty]$.
Problem 2 Let ${ }^{(X, \mathcal{M}, \mu)}$ be any measure space (so ${ }^{\mu}$ is a measure on the σ-algebra \mathcal{M} of subsets of ${ }^{X}$). Show that the set of equivalence classes of ${ }^{\mu}$-integrable functions X, on with the equivalence relation

$$
f_{1} \equiv f_{2} \Longleftrightarrow \mu\left(\left\{x \in X ; f_{1}(x) \neq f_{2}(x)\right\}\right)=0
$$

is a normed linear space with the usual linear structure and the norm given by

$$
\|f\|=\int_{X}|f| d \mu
$$

Problem 3 Let (X, \mathcal{M}) be a set with a σ-algebra. Let $\mu: \mathcal{M} \rightarrow \mathbb{R}$ be a finite measure in the sense that

$$
\mu(\phi)=0 \text { and for any }\left\{E_{i}\right\}_{i=1}^{\infty} \subset \mathcal{M} \underset{\text { with }}{ } E_{i} \cap E_{j}=\phi_{\text {for }} i \neq j,
$$

$$
\begin{equation*}
\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right) \tag{1}
\end{equation*}
$$

with the series on the right always absolutely convergenct (i.e., this is part of the requirement on ${ }^{\mu}$). Define

$$
\begin{equation*}
|\mu|(E)=\sup \sum_{i=1}^{\infty}\left|\mu\left(E_{i}\right)\right| \tag{2}
\end{equation*}
$$

Hint 1. You must show that $|\mu|(E)=\sum_{i=1}^{\infty}|\mu|\left(A_{i}\right) \bigcup_{i f} A_{i}=E \quad A_{i} \in \mathcal{M}$ being $A_{j}=\bigcup_{l} A_{j l}$ is a measurable decomposition of A_{j} then together disjoint. Observe that if is a measurable decomposition of then together the ${ }^{A_{j l}}$ give a decomposition of E. Similarly, if $E=\bigcup_{j} E_{j}$ is any such decomposition of E then $A_{j l}=A_{j} \cap E_{l}$ gives such a decomposition of ${ }^{A_{j}}$.

Hint 2. See W. Rudin, Real and complex analysis, third edition ed., McGraw-Hill, 1987. p. 117!

Problem 4 (Hahn Decomposition)

With assumptions as in Problem 3:

$$
\mu_{+}=\frac{1}{2}(|\mu|+\mu) \quad \mu_{-}=\frac{1}{2}(|\mu|-\mu)
$$

1. Show that and are positive measures, $\mu=\mu_{+}-\mu_{-}$. Conclude that the definition of a measure in the notes based on (4.17) is the same as that in Problem 3.
2. Show that ${ }^{\mu_{ \pm}}$so constructed are orthogonal in the sense that there is a set $E \in \mathcal{M}_{\text {such that }} \mu_{-}(E)=0, \mu_{+}(X \backslash E)=0$.

Hint. Use the definition of ${ }^{|\mu|}$ to show that for any $F \in \mathcal{M}$ and any $\in>0$ there is a subset $F^{\prime} \in \mathcal{M}, F^{\prime} \subset F_{\text {such that }} \mu_{+}\left(F^{\prime}\right) \geq \mu_{+}(F)-\epsilon$ and $\mu_{-}\left(F^{\prime}\right) \leq \epsilon$. Given $\quad \delta>0$ apply this result repeatedly (say with $\epsilon=2^{-n} \delta$) to find a decreasing $F_{1}=X, F_{n} \in \mathcal{M}, F_{n+1} \subset F_{n}$
sequence of sets such that
$\mu_{+}\left(F_{n}\right) \geq \mu_{+}\left(F_{n-1}\right)-2^{-n} \delta \quad \mu_{-}\left(F_{n}\right) \leq 2^{-n} \delta$. Conclude that $G=\bigcap_{n} F_{n}$ has $\mu_{+}(G) \geq \mu_{+}(X)-\delta \quad \mu_{-}(G)=0$. Now let G_{m} be chosen this way with $\delta=1 / m$. Show that $E=\bigcup_{m} G_{m}$ is as required.

Problem 5

Now suppose that ${ }^{\mu}$ is a finite, positive Radon measure on a locally compact metric space X (meaning a finite positive Borel measure outer regular on Borel sets and inner regular on open sets). Show that ${ }^{\mu}$ is inner regular on all Borel sets and hence, given $\epsilon>0$ and
$E \in \mathcal{B}(X) \quad$ there exist sets $K \subset E \subset U$ with K compact and U open such that $\mu(K) \geq \mu(E)-\epsilon \mu(E) \geq \mu(U)-\epsilon$

$K^{\prime} \Subset U$		
Hint. First take U open, then use its inner regularity to find K with		and
$\mu\left(K^{\prime}\right) \geq \mu(U)-\epsilon / 2$	$\mu\left(E \backslash K^{\prime}\right) \quad V \supset K^{\prime} \backslash E$	
. How big is	? Find with	h V open and look at
$K=K^{\prime} \backslash V$		

