Lecture Nine: Hopf and Harnack Revisited

1 The Hopf maximum principle for uniformly elliptic operators

The next result that we will generalise is the Hopf Maximum principle. As before we will consider uniformly elliptic operators L taking

$$
L f=A_{i j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
$$

with $\lambda|\mathbf{v}|^{2}<\mathbf{v} \cdot A \mathbf{v} \leq \Lambda|\mathbf{v}|^{2}$ for some real $0<\lambda \leq \Lambda$.
Theorem 1.1 (The Hopf Maximum principle for uniformly elliptic operators) Let u be an L harmonic function on $B_{r}(0)$ with a strict maximum at $x \in \partial B_{r}(0)$. There are constants C which depend only on L and the dimension such that

$$
\begin{equation*}
\left.\frac{\partial u}{\partial \mathbf{n}}\right|_{(x)} \geq \frac{C}{r}(u(x)-u(0)) \tag{1}
\end{equation*}
$$

We will actually prove that

$$
\begin{equation*}
\left.\frac{\partial u}{\partial \mathbf{n}}\right|_{(x)} \geq \frac{C}{r}\left(u(x)-\sup _{B_{r}} u\right) . \tag{2}
\end{equation*}
$$

Theorem 1.1 will then follow easily once we have a harnack inequaltity for elliptic operators.
Proof This proof is similar to the earlier version, though a bit more complicated. We will prove the case $r=1$ and claim that the general result follows by scaling exactly as it did for the previous Hopf maximum principle. Let α be a constant, and define

$$
\begin{equation*}
v(\mathbf{x})=e^{-\alpha|\mathbf{x}|^{2}}-e^{-\alpha} \tag{3}
\end{equation*}
$$

Calculate

$$
\begin{aligned}
L v & =A_{i j} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} \\
& =A_{i j} \frac{\partial}{\partial x_{j}}\left(-2 \alpha x_{i} e^{-\alpha|\mathbf{x}|^{2}}\right) \\
& =\left(-2 A_{i i} \alpha+4 A_{i j} \alpha^{2} x_{i} x_{j}\right) e^{-\alpha|\mathbf{x}|^{2}} \\
& \geq\left(-2 A_{i i} \alpha+4 \alpha^{2} \lambda|\mathbf{x}|^{2}\right) e^{-\alpha|\mathbf{x}|^{2}}
\end{aligned}
$$

by uniform elipticity. Restricting to $B_{1} \backslash B_{1 / 2}$ we have

$$
\begin{equation*}
L v \geq\left(\alpha^{2} \lambda-2 \alpha A_{i i}\right) e^{-\alpha|\mathbf{x}|^{2}}, \tag{4}
\end{equation*}
$$

and so picking α large we can get $L v \geq 0$ on the annulus.
Consider $u+\epsilon v$. Clearly this is subharmonic on $B_{1} \backslash B_{1 / 2}$, so it takes it's maximum on either the inner or the outer boundary. We'll pick ϵ so that it occurs at x. We need

$$
u(x)+\epsilon v(x) \geq \sup _{B_{r}}(u+\epsilon v)
$$

Evaluating v gives

$$
u(x) \geq \sup _{B_{r}}\left(u+\epsilon\left(e^{-\alpha / 4}-e^{-\alpha}\right)\right),
$$

therefore choose

$$
\begin{equation*}
\epsilon=\frac{u(x)-\sup _{B_{r}} u}{2\left(e^{\alpha / 4}-e^{-\alpha}\right)} . \tag{5}
\end{equation*}
$$

Also note that v is zero on the outer boundary, so the maximum of $u+\epsilon v$ is at x. It follows that

$$
\begin{equation*}
\left.\frac{\partial(u+\epsilon v)}{\partial \mathbf{n}}\right|_{(x)} \geq 0 \tag{6}
\end{equation*}
$$

Calculate $\left.\frac{\partial v}{\partial \mathbf{n}}\right|_{(x)}=-2 \alpha e^{-\alpha}$, substitute in, and rearrange to get

$$
\begin{align*}
\left.\frac{\partial u}{\partial \mathbf{n}}\right|_{(x)} & \geq-\left.\epsilon \frac{\partial v}{\partial \mathbf{n}}\right|_{(x)} \tag{7}\\
& \geq \frac{2 \alpha e^{-\alpha}}{2\left(e^{\alpha / 4}-e^{-\alpha}\right)}\left(u(x)-\sup _{B_{r}} u\right) . \tag{8}
\end{align*}
$$

The result then follows from the Harnack inequality.

2 Another proof of the Harnack inequality

We will now give an alternative proof of the Harnack inequality. It is based on a gradient estimate that is slightly stronger than the one we proved.

Proposition 2.1 Let u be a positive harmonic function on $B_{2 r}$. Then

$$
\begin{equation*}
\sup _{B_{r}} \frac{|\nabla u|}{u} \leq \frac{c}{r} \tag{9}
\end{equation*}
$$

for some dimensional constant c (ie c depends on the dimension of the space, but not on $u)$.

We will prove this next time.
We can derive the Harnack inequality from this as follows. Pick x and y in B_{r}, and let γ_{1} be the straight path from x to 0 , and γ_{2} the straight path from 0 to y. Note that $\frac{|\nabla u|}{u}=|\nabla(\log u)|$, and calculate

$$
\begin{align*}
|\log u(y)-\log u(x)| & =\left|\int_{\gamma_{1}} \nabla(\log u) \cdot d x+\int_{\gamma_{2}} \nabla(\log u) \cdot d x\right| \tag{10}\\
& \leq|x| \int_{0}^{1} \mid \nabla\left(\log u(s x)\left|d s+|y| \int_{0}^{1}\right| \nabla(\log u(s y)) \mid d s\right. \tag{11}\\
& \leq(|x|+|y|) \frac{c}{r} \tag{12}\\
& \leq 2 c . \tag{13}
\end{align*}
$$

Taking exponents

$$
\begin{equation*}
e^{-2 c} \leq \frac{u(y)}{u(x)} \leq e^{2 c} \tag{14}
\end{equation*}
$$

and so

$$
\begin{equation*}
\sup _{B_{r}} u \leq e^{2 c} \inf _{B_{r}} u \tag{15}
\end{equation*}
$$

as required.

