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Lecture Six: More General Operators 

1 The Weak definition of a harmonic function 

It is sometimes useful to weaken the notion of a harmonic function somewhat. One way 
of doing this is with the notion of a weakly harmonic function. Let u be a differentiable 
function on some set Ω. We say that u is weakly harmonic on Ω if 

u = 0 (1)�φ · �
Ω 

for all differentiable functions φ with φ = 0 on ∂Ω. One nice thing about this definition is 
that we don’t need u to be as smooth as we did for the old definition, so this really is a 
weaker condition. 

The two definitions of harmonic are linked by Stokes’ theorem. If we take u to be 
harmonic then � 

u = 0 (2)φ�
Ω 

and � 
dS = 0. (3)φ�u ·

∂Ω 

Applying Stokes’ theorem to this we recover the weak definition 

u = 0, (4)�φ · �
Ω 

and it easy to run this argument backwards for C2 functions. 

2 Generalizations of the Laplacian 

Over the last few lectures we have proved some results about the laplacian and harmonic 
functions. Now we will try to generalise some of these. We will consider operators of the 
form � ∂ ∂u 

Lu = aij , (5)
∂xi ∂xji,j 
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where A is a symmetric n by n matrix with entries aij (not necessarily constant). An 
operator written like this is said to be in divergence form since Lu = div(A�u). Note 
that if A is the identity matrix then L is simply the laplacian. We will often be interested 
in functions satisfying Lu = 0. Such functions are called Lharmonic. There is also the 
concept of a weakly L harmonic function, where 

�φ · (A�u) = 0. (6) 
Ω 

by a similar argument to section 1 any Lharmonic function is weakly Lharmonic. 

2.1 Uniformly Elliptic Operators 

Operators where the matrix A satisfies 

2≤< Av,v >≤ Λ vλ|v|2 | |

for some real 0 < λ ≤ Λ and for all vectors v are of particular interest. These operators 
are said to be uniformly elllptic. If there is a lower bound but not an upper bound the 
operator is simply said to be elliptic. We can extend many of the results we proved for 
harmonic functions to functions solving any uniformly elliptic operator. 

2.2 The Cacciopolli Inequality for uniformly elliptic operators 

The first result that we will generalise is the Cacciopolli inequality. This is almost exactly 
the same inequality as for harmonic functions. 

Theorem 2.1 If L is uniformly elliptic with λ|v|2 ≤< Av,v >≤ Λ v 2 and u satisfies| |
uLu ≥ 0 on B2r then 

4Λ2
22 u u .

2
|� | ≤ 

λ2r B2r \BrBr 

Proof Again we start off by introducing a test function φ with φ ≥ 0 and φ = 0 on the 
boundary of B2r . Calculate 

0 ≤ φ2uLu �B2r 

u)≤ 
B2r 

φ2 u(� ·A�

≤ − 
B2r 

< �(φ2 u), A�u > 

φu < �φ,A�u > − φ2 < �u, A�u > ≤ −2 
B2r B2r 
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by Stokes’ theorem. Therefore 

λ φ2 < �u,�u > φu < �φ,A�u > (7)≤ −2 
B2rB2r 

by uniform elipticity. Now now work on the right hand side; 

λ φ2 < �u,�u > φu < �φ,A�u > ≤ −2 
B2r �B2r 

< u�φ, φA�u > ≤ −2 � B2r 

|2 < u�φ, φA�u > ≤ 
B2r 

| 

At each point A is a real symmetric matrix with positive eigenvalues, so it defines a good 
norm. Therefore we can apply CauchySchwarz twice to the last line to get 

λ φ2 < �u,�u > |2 (< u�φ, uA�φ >< φ�u, φA�u >)1/2 (8)≤ 
B2rB2 r �� �1/2 �� �1/2 

.< u�φ, uA�φ > < φ�u, φA�u > (9)≤ 2 
B2r B2r 

Applying uniform ellipticity and rearranging gives 

� �� �1/2 �� �1/2

2
λ φ2 < �u,�u > ≤ 2Λ u < �φ,�φ > φ2 < �u,�u > . (10) 

B2r B2r B2r 

Divide and square to get 

λ2 φ2 2 ≤ 4Λ2 2u . (11)|�u| |�φ|2 

B2 r B2r 

Now pick φ and proceed exactly as we did for the previous Cacciopolli Inequality i.e. let 

φ(x) =
1 if |x| ≤ r; 

.2r−|x| if r < x ≤ 2r r 

Then 

2|�u| ≤ φ2|�u|2 

Br B2r 

4Λ2
2u≤ 

λ2 
B2 r 

|�φ|2 

4Λ2
2 u

2
≤ 4 

λ2r B2r \Br 
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as required.





