# Lecture Five: The Cacciopolli Inequality 

## 1 The Cacciopolli Inequality

The Cacciopolli (or Reverse Poincare) Inequality bounds similar terms to the Poincare inequalities studied last time, but the other way around. The statement is this.

Theorem 1.1 Let $u: B_{2 r} \rightarrow \mathbf{R}$ satisfy $u \triangle u \geq 0$. Then

$$
\begin{equation*}
\int_{B_{r}}|\nabla u|^{2} \leq \frac{4}{r^{2}} \int_{B_{2 r} \backslash B_{r}} u^{2} \tag{1}
\end{equation*}
$$

First prove a Lemma.

Lemma 1.2 If $u: B_{2 r} \rightarrow \mathbf{R}$ satisfies $u \triangle u \geq 0$, and $\phi: B_{2 r} \rightarrow \mathbf{R}$ is non-negative with $\phi=0$ on $\partial B_{2 r}$, then

$$
\begin{equation*}
\int_{B_{2 r}} \phi^{2}|\nabla u|^{2} \leq 4 \int_{B_{2 r}}|u|^{2}|\nabla \phi|^{2} \tag{2}
\end{equation*}
$$

Proof Consider

$$
\begin{equation*}
0 \leq \int_{B_{2 r}} \phi^{2} u \triangle u \tag{3}
\end{equation*}
$$

Clearly $\int_{\partial B_{2 r}} \phi^{2} u \nabla u \cdot d S=0$, so apply Stokes' theorem to get $\int_{B_{2 r}} \phi^{2} u \triangle u+\int_{B_{2} r} \nabla\left(\phi^{2} u\right)$. $\nabla u=0$. From this

$$
\begin{equation*}
0 \leq-\int_{B_{2 r}} \nabla\left(\phi^{2} u\right) \nabla u=-2 \int_{B_{2 r}} \phi u \nabla \phi \cdot \nabla u-\int_{B_{2 r}} \phi^{2}|\nabla u|^{2}, \tag{4}
\end{equation*}
$$

and so

$$
\begin{align*}
\int_{B_{2 r}} \phi^{2}|\nabla u|^{2} & \leq-2 \int_{B_{2 r}} \phi u \nabla \phi \nabla u  \tag{5}\\
& \leq 2 \int_{B_{2 r}} \phi|u||\nabla \phi||\nabla u| . \tag{6}
\end{align*}
$$

Recall the inequality $\int f g \leq\left(\int f^{2}\right)^{1 / 2}\left(\int g^{2}\right)^{1 / 2}$ for any functions $f$ and $g$ (this is one form of the Cauchy-Schwarz inequality), and apply it above to get

$$
\begin{equation*}
\int_{B_{2 r}} \phi^{2}|\nabla u|^{2} \leq 2\left(\int_{B_{2 r}} \phi^{2}|\nabla u|^{2}\right)^{1 / 2}\left(\int_{B_{2 r}}|u|^{2}|\nabla \phi|^{2}\right)^{1 / 2} . \tag{7}
\end{equation*}
$$

Dividing and squaring then gives

$$
\begin{equation*}
\int_{B_{2 r}} \phi^{2}|\nabla u|^{2} \leq 4 \int_{B_{2 r}}|u|^{2}|\nabla \phi|^{2} . \tag{8}
\end{equation*}
$$

To complete the proof of theorem 1.1 pick

$$
\phi(x)= \begin{cases}1 & \text { if }|x| \leq r ; \\ \frac{2 r-|x|}{r} & \text { if } r<x \leq 2 r,\end{cases}
$$

so $|\nabla \phi|=0$ on $B_{r}$ and $|\nabla \phi|=1 / r$ on $B_{2 r} \backslash B_{r}$. Substitute this into the lemma to obtain the result, namely

$$
\begin{equation*}
\int_{B_{r}}|\nabla u|^{2} \leq \frac{4}{r^{2}} \int_{B_{2 r} \backslash B_{r}} u^{2} . \tag{9}
\end{equation*}
$$

## 2 Applications of the Cacciopolli Inequality

### 2.1 Bounding the growth of a harmonic function

One nice consequence of the Cacciopolli Inequality is the following inequality bounding the rate at which a harmonic function can decay.

Proposition 2.1 There are strictly positive dimensional constants $k(n)$ such that

$$
\begin{equation*}
\int_{B_{2 r}} u^{2} \geq(1+k(n)) \int_{B_{r}} u^{2} \tag{10}
\end{equation*}
$$

for all harmonic functions $u: B_{2 r} \rightarrow \mathbb{R}$.
Proof Let $\phi$ be a test function as before, and consider

$$
\begin{aligned}
\int_{B_{2 r}}|\nabla(\phi u)|^{2} & =\int_{B_{2 r}}|\phi \nabla u+u \nabla \phi|^{2} \\
& =\int_{B_{2 r}} \phi^{2}|\nabla u|^{2}+u^{2}|\nabla \phi|^{2}+2 u \phi \nabla \phi \cdot \nabla u .
\end{aligned}
$$

Apply Cauchy-Schwarz and lemma 1.2 to get

$$
\begin{aligned}
\int_{B_{2 r}}|\nabla(\phi u)|^{2} & \leq \int_{B_{2 r}} \phi^{2}|\nabla u|^{2}+\int_{B_{2 r}} u^{2}|\nabla \phi|^{2}+2\left(\int_{B_{2 r}} \phi^{2}|\nabla u|^{2}\right)^{1 / 2}\left(\int_{B_{2 r}} u^{2}|\nabla \phi|^{2}\right)^{1 / 2} \\
& \leq 2 \int_{B_{2 r}} \phi^{2}|\nabla u|^{2}+2 \int_{B_{2 r}} u^{2}|\nabla \phi|^{2} . \\
& \leq 10 \int_{B_{2 r}} u^{2}|\nabla \phi|^{2} .
\end{aligned}
$$

Now make the same choice of $\phi$ as before to give

$$
\begin{equation*}
\int_{B_{2 r}}|\nabla(\phi u)|^{2} \leq \frac{10}{r^{2}} \int_{B_{2 r} \backslash B_{r}} u^{2} \tag{11}
\end{equation*}
$$

and apply Dirichlet-Poincare to the left hand side to get

$$
\begin{equation*}
\frac{1}{C(n) r^{2}} \int_{B_{2 r}} \phi^{2} u^{2} \leq \frac{10}{r^{2}} \int_{B_{2 r} \backslash B_{r}} u^{2} \tag{12}
\end{equation*}
$$

Since $(\phi u)^{2}$ is a positive function we can reduce the area of the integration, therefore

$$
\begin{equation*}
k(n) \int_{B_{r}} \phi^{2} u^{2} \leq \int_{B_{2 r} \backslash B_{r}} u^{2} . \tag{13}
\end{equation*}
$$

for $k(n)=\frac{1}{10 C(n)}$. Finally note that $\phi=1$ on $B_{r}$, so

$$
\begin{equation*}
k(n) \int_{B_{r}} u^{2} \leq \int_{B_{2 r} \backslash B_{r}} u^{2}, \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
(1+k(n)) \int_{B_{r}} u^{2} \leq \int_{B_{2 r}} u^{2} . \tag{15}
\end{equation*}
$$

This completes the proof.

### 2.2 Bounding the growth of the energy of a harmonic function

We will now prove a similar inequality for the Dirichlet energy of a harmonic function.
Proposition 2.2 There are dimensional constants $c(n)$ such that

$$
\begin{equation*}
\int_{B_{2 r}}|\nabla u|^{2} \geq(1+\theta(n)) \int_{B_{r}}|\nabla u|^{2} . \tag{16}
\end{equation*}
$$

for all harmonic functions $u: B_{2 r} \rightarrow \mathbb{R}$. .

Proof It suffices to show that

$$
\begin{equation*}
c(n) \int_{B_{r}}|\nabla u|^{2} \leq \int_{B_{2 r} \backslash B_{r}}|\nabla u|^{2} . \tag{17}
\end{equation*}
$$

To do this we use two inequalities. Firstly we will state and use without proof the NeumannPoincare inequality for an annulus, namely if $A=\frac{1}{\operatorname{vol}_{B_{2 r} \backslash B_{r}}} \int_{B_{2 r} \backslash B_{r}} u$ then

$$
\begin{equation*}
\int_{B_{2 r} \backslash B_{r}}(u-A)^{2} \leq d(n) r^{2} \int_{B_{2 r} \backslash B_{r}}|\nabla u|^{2} . \tag{18}
\end{equation*}
$$

Secondly we use Cacciopolli, noting that if $\triangle u=0$ then $\triangle(u+A)=0$, and $\nabla(u+A)=\nabla u$, to give

$$
\begin{equation*}
r^{2} \int_{B_{r}}|\nabla u|^{2} \leq 4 \int_{B_{2 r} \backslash B_{r}}(u-A)^{2} . \tag{19}
\end{equation*}
$$

Together (15) and (16) give

$$
\begin{equation*}
\frac{1}{4 d(n)} \int_{B_{r}}|\nabla u|^{2} \leq \int_{B_{2 r} \backslash B_{r}}|\nabla u|^{2} \tag{20}
\end{equation*}
$$

as required.

