Lecture Four: The Poincare Inequalities

In this lecture we introduce two inequalities relating the integral of a function to the integral of it's gradient. They are the Dirichlet-Poincare and the Neumann-Poincare inequalities.

1 The Dirichlet-Poincare Inequality

Theorem 1.1 If $u: B_{r} \rightarrow \mathbb{R}$ is a C^{1} function with $u=0$ on ∂B_{r} then

$$
\begin{equation*}
\int_{B_{r}} u^{2} \leq C(n) r^{2} \int_{B_{r}}|\nabla u|^{2} . \tag{1}
\end{equation*}
$$

We will prove this for the case $n=1$. Here the statement becomes

$$
\begin{equation*}
\int_{-r}^{r} f^{2} \leq k r^{2} \int_{-r}^{r}\left(f^{\prime}\right)^{2} \tag{2}
\end{equation*}
$$

where f is a C^{1} function satisfying $f(-r)=f(r)=0$. By the Fundamental Theorem of Calculus

$$
\begin{equation*}
f(s)=\int_{-r}^{s} f^{\prime}(x) . \tag{3}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
|f(s)| \leq \int_{-r}^{s}\left|f^{\prime}(x)\right| . \tag{4}
\end{equation*}
$$

Recall the Cauchy-Schwarz inequality $\left(\int h g \leq\left(\int h^{2}\right)^{1 / 2}\left(\int g^{2}\right)^{1 / 2}\right)$. Apply this with $h=1, g=\left|f^{\prime}\right|$ to get

$$
\begin{equation*}
|f(s)| \leq\left(\int_{-r}^{s}\left(f^{\prime}\right)^{2}\right)^{1 / 2}(r+s)^{1 / 2} \leq\left(\int_{-r}^{r}\left(f^{\prime}\right)^{2}\right)^{1 / 2}(2 r)^{1 / 2} \tag{5}
\end{equation*}
$$

Squaring both sides gives

$$
\begin{equation*}
|f(s)|^{2} \leq 2 r \int_{-r}^{r}\left(f^{\prime}(s)\right)^{2}, \tag{6}
\end{equation*}
$$

and finally we integrate over $[-r, r]$ to give

$$
\begin{equation*}
\int_{-r}^{r}|f(s)|^{2} \leq 4 r^{2} \int_{-r}^{r}\left|f^{\prime}(s)\right|^{2} \tag{7}
\end{equation*}
$$

as required.

2 The Nueman-Poincare Inequality

Theorem 2.1 If u is C^{1} on B_{r}, and we define $A=\frac{1}{v o l B_{r}} \int_{B_{r}}$ u then

$$
\begin{equation*}
\int_{B_{r}}(u-A)^{2} \leq C(n) r^{2} \int_{B_{r}}|\nabla u|^{2} . \tag{8}
\end{equation*}
$$

Again we give the proof in the case $n=1$.
Take a differentiable function f with $A=\frac{1}{2 r} \int_{-r}^{r} f$. Note by the intermediate value theorem that there is a point c in $[-r, r]$ with $f(c)=A$. We have

$$
f(s)=f(c)+\int_{c}^{s} f^{\prime}(s) .
$$

From this we get $|f(s)-A| \leq \int_{c}^{s}\left|f^{\prime}(t)\right| \leq \int_{-r}^{r}\left|f^{\prime}(t)\right|$. Apply Cauchy-Schwarz again to give

$$
\begin{equation*}
|f(s)-A| \leq 2 r\left(\int_{-r}^{r}\left(f^{\prime}\right)^{2}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

Squaring and integrating then gives our result.

$$
\begin{equation*}
\int_{-r}^{r}(f(s)-A)^{2} \leq(2 r)^{2} \int_{-r}^{r}\left|f^{\prime}(s)\right|^{2} \tag{10}
\end{equation*}
$$

It is not difficult to extend these proofs to higher dimensional cubes.
There is another interesting fact related to the Neumann-Poincare inequality. If we define $g(x)=\int_{B_{r}}(u-x)^{2}$ we can rearrange to get $g(x)=\int_{B_{r}} u^{2}-2 x \int_{B_{r}} u-x^{2}$. We then find the minimum by taking the derrivative, and see that it occurs at $x=\frac{\int_{B_{r}} u}{\operatorname{vol} B_{r}}$, so the mean really is the best constant approximation to a function.

