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Lecture Three: The Hopf Maximum Principle 

Lecture Three: The Hopf Maximum Principle 

In this lecture we will state and prove the Hopf Maximum Principle. 

Theorem 1.1 If u is an harmonic function on the closure of Br (0) ⊂ Rn, and x0 on the 
boundary of Br (0) is a strict maximum of u (ie u(x0) > u(y) for all y =� x0) then 

∂u k
(x0) ≥ (u(x0) − u(0)) (1)

∂n r 
for some strictly positive dimensional constant k. 

Proof We prove this from the maximum principle. First consider the case r = 1. Let 
v(x) = e−α|x|2 − e−α, so v = 0 on ∂B1(0) and v > 0 on the interior. Define 

2 w : Rn −→ R by w(x) = x| | 

and 

f : R −→ R by f (t) = e−αt − e−α 

so that v = f (w). Now consider 

� f (w) = 2 + f �(w)� wf ��(w)|� w| 
x|2x 2= 4α2 e−α| |2 | x| − 2nαe−α| . 

Picking α = 4n and restricting v to 1 ≥ x ≥ 1/2 we obtain | | 

� v ≥ 2αe−α(α/2 − n) 
2 e−4n≥ 8n .


Now apply this to u. On the annulus B1 \ B1/2


1 



� = 

�(u + �v) = ��v > 0, (2) 

so u + �v is subharmonic on this anulus, and the maximum principle applies. Therefore 
the maximum of u + �v on the annulus B1 \ B1/2 occurs on the boundary. Recall that u 
has a strict maximum on the outer boundary, so if we choose � very small we can arrange 
that u + �v also takes it’s maximum on the outer boundary. For this we need 

u(x0) + �v(x0) ≥ max∂B1/2 
(u(x) + �v(x)) 

so that 

u(x0) ≥ max∂B1/2 
u(x) + �(e−n − e−4n). 

We can choose 
u(x0) −max∂B1/2 

u(x) 

2(e−n − e−4n) 
. (3) 

We know that u + �v has a maximum on the outer boundary and it has to be at x0 

(since v = 0 on the outer boundary). It follows that 

∂(u + �v) ≥ 0 
∂n 

and therefore that 

∂u ∂v 
. 

∂n 
(x0) ≥ −�

∂n 
∂v Calculating ∂n and substituting in for � we obtain 

∂u 8ne−4n 

− e−4n)
(u(x0) −max∂B1/2 

u(x)). (4)
∂n 

(x0) ≥ 
2(e−n 

Finally we apply the Harnack inequality to get this in terms of u(0). Define w(x) by 
w(x) = u(x0) − u(x). Note that w is harmonic and nonnegative, therefore the Harnack 
inequality holds, and we get 

w(0) ≤ maxB1/2(0)w(x) ≤ C(n)minB1/2(0)w(x) 

for an appropriate dimensional constant C(n). Therefore 

u(x0) − u(0) ≤ (u(x0) −maxB1/2(0)u(x)). (5)
C(n) 

Substituting this into (4) we obtain 

∂u 8ne−4n 

− e−4n)
(u(x0) − u(0)). (6)

∂n 
(x0) ≥ 

2C(n)(e−n 
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This completes the proof for r = 1. We will get the general case by scaling. If u is harmonic 
on Br(0) and we define ˜ u is harmonic on B1(0). Also if x0 ∈ ∂Br(0) is a u(y) = u(ry) then ˜

x0 = x0/r is a strict maximum of ˜strict maximum of u then ˜ u on the boundary. Therefore 

∂ ̃u 8ne−4n 

(˜
− e−4n)

(˜ x0) − ˜u(˜ u(0)) (7)
∂n 

x0) ≥ 
2C(n)(e−n 

8ne−4n 

− e−4n)
(u(x0) − u(0)). (8)≥ 

2C(n)(e−n


u ∂u
By the chain rule ∂˜ x0) = r ∂n (x0), so 

∂u 1 8ne−4n 

∂n (˜

− e−4n)
(u(x0) − u(0)) (9)

∂n 
(x0) ≥ 

r 2C(n)(e−n 

as required. 
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