Lecture Three: The Hopf Maximum Principle

1 Lecture Three: The Hopf Maximum Principle

In this lecture we will state and prove the Hopf Maximum Principle.
Theorem 1.1 If u is an harmonic function on the closure of $B_{r}(0) \subset \mathbf{R}^{n}$, and x_{0} on the boundary of $B_{r}(0)$ is a strict maximum of $u\left(\right.$ ie $u\left(x_{0}\right)>u(y)$ for all $\left.y \neq x_{0}\right)$ then

$$
\begin{equation*}
\frac{\partial u}{\partial \mathbf{n}}\left(x_{0}\right) \geq \frac{k}{r}\left(u\left(x_{0}\right)-u(0)\right) \tag{1}
\end{equation*}
$$

for some strictly positive dimensional constant k.
Proof We prove this from the maximum principle. First consider the case $r=1$. Let $v(x)=e^{-\alpha|x|^{2}}-e^{-\alpha}$, so $v=0$ on $\partial B_{1}(0)$ and $v>0$ on the interior. Define

$$
w: \mathbf{R}^{n} \longrightarrow \mathbf{R} \text { by } w(x)=|x|^{2}
$$

and

$$
f: \mathbf{R} \longrightarrow \mathbf{R} \text { by } f(t)=e^{-\alpha t}-e^{-\alpha}
$$

so that $v=f(w)$. Now consider

$$
\begin{aligned}
\triangle f(w) & =f^{\prime \prime}(w)|\nabla w|^{2}+f^{\prime}(w) \Delta w \\
& =4 \alpha^{2} e^{-\alpha|x|^{2}}|x|^{2}-2 n \alpha e^{-\alpha|x|^{2}} .
\end{aligned}
$$

Picking $\alpha=4 n$ and restricting v to $1 \geq|x| \geq 1 / 2$ we obtain

$$
\begin{aligned}
\Delta v & \geq 2 \alpha e^{-\alpha}(\alpha / 2-n) \\
& \geq 8 n^{2} e^{-4 n}
\end{aligned}
$$

Now apply this to u. On the annulus $B_{1} \backslash B_{1 / 2}$

$$
\begin{equation*}
\triangle(u+\epsilon v)=\epsilon \triangle v>0, \tag{2}
\end{equation*}
$$

so $u+\epsilon v$ is sub-harmonic on this anulus, and the maximum principle applies. Therefore the maximum of $u+\epsilon v$ on the annulus $B_{1} \backslash B_{1 / 2}$ occurs on the boundary. Recall that u has a strict maximum on the outer boundary, so if we choose ϵ very small we can arrange that $u+\epsilon v$ also takes it's maximum on the outer boundary. For this we need

$$
u\left(x_{0}\right)+\epsilon v\left(x_{0}\right) \geq \max _{\partial B_{1 / 2}}(u(x)+\epsilon v(x))
$$

so that

$$
u\left(x_{0}\right) \geq \max _{\partial B_{1 / 2}} u(x)+\epsilon\left(e^{-n}-e^{-4 n}\right) .
$$

We can choose

$$
\begin{equation*}
\epsilon=\frac{u\left(x_{0}\right)-\max _{\partial B_{1 / 2}} u(x)}{2\left(e^{-n}-e^{-4 n}\right)} \tag{3}
\end{equation*}
$$

We know that $u+\epsilon v$ has a maximum on the outer boundary and it has to be at x_{0} (since $v=0$ on the outer boundary). It follows that

$$
\frac{\partial(u+\epsilon v)}{\partial n} \geq 0
$$

and therefore that

$$
\frac{\partial u}{\partial n}\left(x_{0}\right) \geq-\epsilon \frac{\partial v}{\partial n} .
$$

Calculating $\frac{\partial v}{\partial n}$ and substituting in for ϵ we obtain

$$
\begin{equation*}
\frac{\partial u}{\partial n}\left(x_{0}\right) \geq \frac{8 n e^{-4 n}}{2\left(e^{-n}-e^{-4 n}\right)}\left(u\left(x_{0}\right)-\max _{\partial B_{1 / 2}} u(x)\right) . \tag{4}
\end{equation*}
$$

Finally we apply the Harnack inequality to get this in terms of $u(0)$. Define $w(x)$ by $w(x)=u\left(x_{0}\right)-u(x)$. Note that w is harmonic and non-negative, therefore the Harnack inequality holds, and we get

$$
w(0) \leq \max _{B_{1 / 2}(0)} w(x) \leq C(n) \min _{B_{1 / 2}(0)} w(x)
$$

for an appropriate dimensional constant $C(n)$. Therefore

$$
\begin{equation*}
\frac{u\left(x_{0}\right)-u(0)}{C(n)} \leq\left(u\left(x_{0}\right)-\max _{B_{1 / 2}(0)} u(x)\right) . \tag{5}
\end{equation*}
$$

Substituting this into (4) we obtain

$$
\begin{equation*}
\frac{\partial u}{\partial n}\left(x_{0}\right) \geq \frac{8 n e^{-4 n}}{2 C(n)\left(e^{-n}-e^{-4 n}\right)}\left(u\left(x_{0}\right)-u(0)\right) . \tag{6}
\end{equation*}
$$

This completes the proof for $r=1$. We will get the general case by scaling. If u is harmonic on $B_{r}(0)$ and we define $\tilde{u}(y)=u(r y)$ then \tilde{u} is harmonic on $B_{1}(0)$. Also if $x_{0} \in \partial B_{r}(0)$ is a strict maximum of u then $\tilde{x}_{0}=x_{0} / r$ is a strict maximum of \tilde{u} on the boundary. Therefore

$$
\begin{align*}
\frac{\partial \tilde{u}}{\partial n}\left(\tilde{x}_{0}\right) & \geq \frac{8 n e^{-4 n}}{2 C(n)\left(e^{-n}-e^{-4 n}\right)}\left(\tilde{u}\left(\tilde{x}_{0}\right)-\tilde{u}(0)\right) \tag{7}\\
& \geq \frac{8 n e^{-4 n}}{2 C(n)\left(e^{-n}-e^{-4 n}\right)}\left(u\left(x_{0}\right)-u(0)\right) . \tag{8}
\end{align*}
$$

By the chain rule $\frac{\partial \tilde{u}}{\partial n}\left(\tilde{x}_{0}\right)=r \frac{\partial u}{\partial n}\left(x_{0}\right)$, so

$$
\begin{equation*}
\frac{\partial u}{\partial n}\left(x_{0}\right) \geq \frac{1}{r} \frac{8 n e^{-4 n}}{2 C(n)\left(e^{-n}-e^{-4 n}\right)}\left(u\left(x_{0}\right)-u(0)\right) \tag{9}
\end{equation*}
$$

as required.

