Lecture 22: The mean value inequality for uniformly elliptic operators part II

1 The mean value inequality: Iterative argument continued

In this lecture we will complete the proof of the mean value inequality. Last time we had

$$
\begin{equation*}
\int_{A_{r, k}}\left((u-k)_{+}\right)^{2} \leq \frac{\tilde{c}}{(R-r)^{2}(k-h)^{4 / n}}\left(\int_{A_{R, h}}\left((u-h)_{+}\right)^{2}\right)^{(1+2 / n)} \tag{1}
\end{equation*}
$$

for all $h<k$ and $r<R$. Define $r_{m}=1+2^{-m}$ and $k_{m}=\left(2-2^{-m}\right) k$ for some constant k. Applying the above inequality to $r_{m}, r_{m+1}, k_{m}, k_{m+1}$ gives

$$
\begin{equation*}
\int_{A_{r_{m+1}, k_{m+1}}}\left(\left(u-k_{m+1}\right)_{+}\right)^{2} \leq \frac{\tilde{c}}{\left(r_{m}-r_{m+1}\right)^{2}\left(k_{m+1}-k_{m}\right)^{4 / n}}\left(\int_{A_{r_{m}, k_{m}}}\left(\left(u-k_{m}\right)_{+}\right)^{2}\right)^{(1+2 / n)} . \tag{2}
\end{equation*}
$$

Define $\phi(m)=\left(\int_{A_{r_{m}, k_{m}}}\left(\left(u-k_{m}\right)_{+}\right)^{2}\right)^{1 / 2}$ and $\epsilon=2 / n$, so

$$
\begin{equation*}
\phi(m+1) \leq \frac{\sqrt{\tilde{c}}}{\left(r_{m}-r_{m+1}\right)\left(k_{m+1}-k_{m}\right)^{2 / n}}(\phi(m))^{1+\epsilon} . \tag{3}
\end{equation*}
$$

Substituting for r_{m}, k_{m} and renaming $c=\sqrt{\tilde{c}}$ gives

$$
\begin{equation*}
\phi(m+1) \leq \frac{2^{m+1} c}{\left(2^{-m-1} k\right)^{2 / n}}(\phi(m))^{1+\epsilon} . \tag{4}
\end{equation*}
$$

Now use induction to show that $\phi(n) \rightarrow 0$ as $n \rightarrow \infty$. Suppose there is some constant $\gamma>1$ with $\phi(m) \leq \frac{\phi(0)}{\gamma^{m}}$. Then

$$
\begin{align*}
\phi(m+1) & \leq \frac{2^{m+1} c}{\left(2^{-m-1} k\right)^{2 / n}}\left(\frac{\phi(0)}{\gamma^{m}}\right)^{1+\epsilon} \tag{5}\\
& \leq\left(\frac{2^{m+1} c}{\left(2^{-m-1} k\right)^{2 / n}}\left(\frac{\phi(0)}{\gamma^{m}}\right)^{\epsilon}\right) \frac{\phi(0)}{\gamma^{m}} \tag{6}
\end{align*}
$$

so if

$$
\begin{equation*}
\left(\frac{2^{m+1} c}{\left(2^{-m-1} k\right)^{2 / n}}\left(\frac{\phi(0)}{\gamma^{m}}\right)^{\epsilon}\right) \leq \frac{1}{\gamma} \tag{7}
\end{equation*}
$$

then we get $\phi(n) \leq \frac{\phi(0)}{\gamma^{n}}$ for all n. It suffices to pick $\gamma>2^{\frac{1+\epsilon}{\epsilon}}$ and $k>\left(2^{1+\epsilon} c \gamma(\phi(0))^{\epsilon}\right)^{\frac{1}{\epsilon}}=$ $2 k^{\prime} \phi(0)$ for appropriate k^{\prime}. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi(n) \leq \lim _{n \rightarrow \infty} \frac{\phi(0)}{\gamma^{n}}=0 \tag{8}
\end{equation*}
$$

so

$$
\begin{equation*}
\int_{A_{r_{m}, k_{m}}}\left(\left(u-k_{m}\right)_{+}\right)^{2} \rightarrow 0 \text { as } n \rightarrow \infty . \tag{9}
\end{equation*}
$$

Note that $\lim r_{m}=1$, and $\lim k_{m}=2 k$ so we get

$$
\begin{equation*}
\int_{A_{1,2 k}}\left((u-2 k)_{+}\right)^{2}=0 \tag{10}
\end{equation*}
$$

and conclude that $u \leq 2 k$ on B_{1}. Putting in our value for k we obtain

$$
\begin{equation*}
\sup _{B_{1}\left(x_{0}\right)} u \leq\left(2^{1+\epsilon} c\right)^{\frac{1}{\epsilon}} \phi(0) \tag{11}
\end{equation*}
$$

and, writing out $\phi(0)$ and ϵ,

$$
\begin{align*}
\sup _{B_{1}\left(x_{0}\right)} u & \leq k^{\prime}\left(\int_{A_{2,0}}\left(u_{+}\right)^{2}\right)^{1 / 2} \tag{12}\\
& \leq k^{\prime}\left(\int_{B_{2}\left(x_{0}\right)} u^{2}\right)^{1 / 2} \tag{13}
\end{align*}
$$

This is the mean value inequality.

