Lecture 21: The mean value inequality for uniformly elliptic operators part I

1 The mean value inequality: Iterative argument

In this lecture we will prove a mean value inequality for uniformy elliptic operators in divergence form . The argument is an iterative one due to De Georgi, Nash, and Moser. As usual we take L an operator with

$$
\begin{equation*}
L u=\frac{\partial}{\partial x_{i}} A_{i j} \frac{\partial u}{\partial x_{j}} \tag{1}
\end{equation*}
$$

and $\lambda|v|^{2} \leq A_{i j} v_{i} v_{j} \leq \Lambda|v|^{2}$ for all vectors v. Let u be a function satisfying $u \geq 0, L u \geq 0$. Take x_{0} a point, and R a fixed positive number. Let ϕ be a test function on $B_{R}\left(x_{0}\right)$ which is zero on the boundary. Clearly

$$
\begin{equation*}
\int_{B_{R}\left(x_{0}\right)} \phi^{2} u A \nabla u \cdot d S=0 \tag{2}
\end{equation*}
$$

so, by Stokes' theorem,

$$
\begin{equation*}
\int_{B_{R}\left(x_{0}\right)} \phi^{2} u L u+\int_{B_{R}\left(x_{0}\right)} A_{i j} \frac{\partial \phi^{2} u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}=0 \tag{3}
\end{equation*}
$$

and, since the first term is non-negative,

$$
\begin{equation*}
0 \geq \int_{B_{R}\left(x_{0}\right)} A_{i j} \frac{\partial \phi^{2} u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} . \tag{4}
\end{equation*}
$$

We can simplify this a bit to get

$$
\begin{equation*}
0 \geq \int_{B_{R}\left(x_{0}\right)} A_{i j} \phi^{2} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}+2 \int_{B_{R}\left(x_{0}\right)} A_{i j} \phi u \frac{\partial \phi}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} . \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
-2 \int_{B_{R}\left(x_{0}\right)} A_{i j} \phi u \frac{\partial \phi}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} \geq \int_{B_{R}\left(x_{0}\right)} A_{i j} \phi^{2} \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} . \tag{6}
\end{equation*}
$$

Apply uniform ellipticity to the right hand side to get

$$
\begin{equation*}
\lambda \int_{B_{R}\left(x_{0}\right)} \phi^{2}|\nabla u|^{2} \leq-2 \int_{B_{R}\left(x_{0}\right)} A_{i j} \phi u \frac{\partial \phi}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} . \tag{7}
\end{equation*}
$$

Now work on the other term. At each point the matrix A defines a good metric, so Cauchy-Schwarz applies, and we get $-\phi u A_{i j} \frac{\partial \phi}{\partial x_{i}} \frac{\partial u}{\partial x_{j}} \leq \phi u(\nabla \phi \cdot A \nabla \phi)^{1 / 2}(\nabla u \cdot A \nabla \phi u)^{1 / 2}$, so

$$
\begin{equation*}
\lambda \int_{B_{R}\left(x_{0}\right)} \phi^{2}|\nabla u|^{2} \leq 2 \int_{B_{R}\left(x_{0}\right)} \phi u(\nabla \phi \cdot A \nabla \phi)^{1 / 2}(\nabla u \cdot A \nabla \phi u)^{1 / 2} . \tag{8}
\end{equation*}
$$

Use Cauchy-Schwarz again in the form $\left.\left.\int f g \leq\left(\int f^{2}\right)\right)^{1 / 2}\left(\int g^{2}\right)\right)^{1 / 2}$ to get

$$
\begin{equation*}
\lambda \int_{B_{R}\left(x_{0}\right)} \phi^{2}|\nabla u|^{2} \leq 2\left(\int_{B_{R}\left(x_{0}\right)} u^{2} \nabla \phi \cdot A \nabla \phi\right)^{1 / 2}\left(\int_{B_{R}\left(x_{0}\right)} \phi^{2} \nabla u \cdot A \nabla u\right)^{1 / 2} \tag{9}
\end{equation*}
$$

Uniform ellipticity then gives

$$
\begin{equation*}
\lambda \int_{B_{R}\left(x_{0}\right)} \phi^{2}|\nabla u|^{2} \leq 2 \Lambda\left(\int_{B_{R}\left(x_{0}\right)} u^{2}|\nabla \phi|^{2}\right)^{1 / 2}\left(\int_{B_{R}\left(x_{0}\right)} \phi^{2}|\nabla u|^{2}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

so rearrange to get

$$
\begin{equation*}
\int_{B_{R}\left(x_{0}\right)} \phi^{2}|\nabla u|^{2} \leq \frac{4 \Lambda^{2}}{\lambda^{2}} \int_{B_{R}\left(x_{0}\right)} u^{2}|\nabla \phi|^{2} . \tag{11}
\end{equation*}
$$

This should be familiar, as we proved it on the way to the Cacciopolli inequality in lecture 6 . We'll apply it slightly differently this time. Consider

$$
\begin{align*}
\int_{B_{R}\left(x_{0}\right)}|\nabla(\phi u)|^{2} & =\int_{B_{R}\left(x_{0}\right)}|\phi \nabla u+u \nabla \phi|^{2} \tag{12}\\
& \leq 2 \int_{B_{R}\left(x_{0}\right)} \phi^{2}|\nabla u|^{2}+2 \int_{B_{R}\left(x_{0}\right)} u^{2}|\nabla \phi|^{2} . \tag{13}
\end{align*}
$$

Combining this with 11 we get

$$
\begin{equation*}
\int_{B_{R}\left(x_{0}\right)}|\nabla(\phi u)|^{2} \leq k \int_{B_{R}\left(x_{0}\right)} u^{2}|\nabla \phi|^{2} \tag{14}
\end{equation*}
$$

for a constant $k=2+\frac{8 \Lambda^{2}}{\lambda^{2}}$. Now we need to use the Sobolev inequality. For Simplicity we will assume that $n \geq 3$, but a similar result holds in the other cases.

Theorem 1.1 Let $\Omega \subset \mathbb{R}^{n}$ with $n \geq 3$, and let w be a function with compact support on Ω. Then

$$
\begin{equation*}
\left(\int_{\Omega}|w|^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} \leq c \int_{\Omega}|\nabla w|^{2} \tag{15}
\end{equation*}
$$

We won't prove this here. Apply it with $w=\phi u$ (this has compact support because ϕ does) to get

$$
\begin{equation*}
\int_{B_{R}\left(x_{0}\right)}(\phi u)^{\frac{2 n}{n-2}} \leq c \int_{B_{R}\left(x_{0}\right)}|\nabla(\phi u)|^{2} \leq \tilde{c} \int_{B_{R}\left(x_{0}\right)} u^{2}|\nabla \phi|^{2} . \tag{16}
\end{equation*}
$$

for some constant \tilde{c}.
Define $A_{r, k}=B_{r}\left(x_{0}\right) \cap\{u>k\}$, and let $\left|A_{r, k}\right|$ be the volume of this set. For any function f define f_{+}to be the positive part, i.e.

$$
\begin{equation*}
f_{+}=\sup (f, 0) \tag{17}
\end{equation*}
$$

Note that if u is L harmonic then u_{+}is L harmonic almost everywhere, and claim without proof that everything we've done today goes through for the positive part of a harmonic function as well as for completely harmonic functions. Also pick $r<R$, and set

$$
\phi= \begin{cases}1 & \text { on } B_{r}\left(x_{0}\right) \tag{18}\\ \frac{R-|x|}{R-r} & \text { on } B_{R}\left(x_{0}\right) \backslash B_{r}\left(x_{0}\right), \text { and } \\ 0 & \text { outside } B_{R}\left(x_{0}\right)\end{cases}
$$

so that $|\nabla \phi|=\frac{1}{R-r}$ on $B_{R}\left(x_{0}\right)$, and 0 elsewhere. Note that if u is L-harmonic then $u-k$ is also L harmonic. Putting all this together we get

$$
\begin{align*}
\left(\int_{A_{r, k}}\left|(u-k)_{+}\right|^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} & \leq\left(\int_{B_{R}\left(x_{0}\right)}\left|\phi(u-k)_{+}\right|^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}} \tag{19}\\
& \leq \tilde{c} \int_{B_{R}\left(x_{0}\right)}|\nabla \phi|^{2}\left((u-k)_{+}\right)^{2} \tag{20}\\
& \leq \frac{\tilde{c}}{(R-r)^{2}} \int_{A_{R, k} \backslash B_{r}\left(x_{0}\right)}\left((u-k)_{+}\right)^{2} . \tag{21}
\end{align*}
$$

Now we'll introduce another important inequality: the Holder Inequality.
Theorem 1.2 Let f, g be functions, and p, q real numbers satisfying $\frac{!}{p}+\frac{1}{q}=1$. Then

$$
\begin{equation*}
\int f g \leq\left(\int f^{p}\right)^{1 / p}\left(\int g^{q}\right)^{1 / q} \tag{22}
\end{equation*}
$$

This is simply a generalisation of the Cauchy-Schwarz inequality, which is the case $p=q=$ 2. Apply this with $p=\frac{n}{n-2}, q=\frac{n}{2}$ and any function f on any set Ω to get

$$
\begin{equation*}
\int_{\Omega} f^{2} \leq\left(\int_{\Omega} f^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}}|\Omega|^{\frac{2}{n}} . \tag{23}
\end{equation*}
$$

Set $f=(u-k)_{+}$and $\Omega=A_{r, k}$ and we get

$$
\begin{align*}
\int_{A_{r, k}}\left((u-k)_{+}\right)^{2} & \leq\left(\int_{A_{r, k}}\left((u-k)_{+}\right)^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{n}}\left|A_{r, k}\right|^{\frac{2}{n}} \tag{24}\\
& \leq \frac{\tilde{c}\left|A_{r, k}\right|^{\frac{2}{n}}}{(R-r)^{2}} \int_{A_{R, k} \backslash B_{r}\left(x_{0}\right)}\left((u-k)_{+}\right)^{2} \tag{25}\\
& \leq \frac{\tilde{c}\left|A_{r, k}\right|^{\frac{2}{n}}}{(R-r)^{2}} \int_{A_{R, k}}\left((u-k)_{+}\right)^{2} . \tag{26}
\end{align*}
$$

Note that if $h<k$ then $A_{r, k} \subset A_{r, h}$. Take $x \in A_{r, k}$. then $u(x)>k$, and $u(x)-h>k-h$. Therefore

$$
\begin{equation*}
\int_{A_{r, k}}\left((u-h)_{+}\right)^{2} \geq \int_{A_{r, k}}(k-h)^{2}=(k-h)^{2}\left|A_{r, k}\right| \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A_{r, k}\right| \leq \frac{1}{(k-h)^{2}} \int_{A_{r, k}}\left((u-h)_{+}\right)^{2} \leq \frac{1}{(k-h)^{2}} \int_{A_{r, h}}\left((u-h)_{+}\right)^{2} . \tag{28}
\end{equation*}
$$

for all $h<k$. Plugging this back into 26 we get

$$
\begin{align*}
\int_{A_{r, k}}\left((u-k)_{+}\right)^{2} & \leq \frac{\tilde{c}}{(R-r)^{2}(k-h)^{4 / n}}\left(\int_{A_{r, h}}\left((u-h)_{+}\right)^{2}\right)^{2 / n} \int_{A_{R, k}}\left((u-k)_{+}\right)^{2}(2 \tag{29}\\
& \leq \frac{\tilde{c}}{(R-r)^{2}(k-h)^{4 / n}}\left(\int_{A_{R, h}}\left((u-h)_{+}\right)^{2}\right)^{2 / n} \int_{A_{R, h}}\left((u-h)_{+}\right)^{2}(\tag{30}\\
& \leq \frac{\tilde{c}}{(R-r)^{2}(k-h)^{4 / n}}\left(\int_{A_{R, h}}\left((u-h)_{+}\right)^{2}\right)^{(1+2 / n)} \tag{31}
\end{align*}
$$

Next lecture we will actually do the induction argument.

