Lecture Two: The Gradient Estimate

1 The Bochner Formula

For an $m \times m$ real matrix we can define a norm by taking

$$
|A|^{2}=\sum_{i, j} a_{i j}^{2}
$$

In particular, if Ω is some subset of \mathbb{R}^{n} and $u: \Omega \rightarrow \mathbb{R}$, then we can take the norm of the Hessian.

$$
\begin{equation*}
\mid \text { Hess }\left.u\right|^{2}=\sum_{i, j}\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right)^{2} . \tag{1}
\end{equation*}
$$

Using this we can prove the following.
Proposition 1.1 (The Bochner formula). Let u be a real valued function on some open subset of \mathbb{R}^{n}, then

$$
\begin{equation*}
\frac{1}{2} \triangle|\nabla u|^{2}=<\nabla \triangle u, \nabla u>+\mid \text { Hess }\left.u\right|^{2} \tag{2}
\end{equation*}
$$

where $<x, y>$ indicates the usual dot product of x and y.
Proof Proof is by calculation

$$
\begin{aligned}
\frac{1}{2} \triangle|\nabla u|^{2} & =\frac{1}{2} \sum_{i, j} \frac{\partial^{2}}{\partial x_{i}^{2}}\left(\frac{\partial u}{\partial x_{j}} \frac{\partial u}{\partial x_{j}}\right) \\
& =\sum_{i, j} \frac{\partial}{\partial x_{i}}\left(\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \frac{\partial u}{\partial x_{j}}\right) \\
& =\sum_{i, j} \frac{\partial^{3} u}{\partial x_{i}^{2} \partial x_{j}} \frac{\partial u}{\partial x_{j}}+\sum_{i, j} \frac{\partial^{2} u}{\partial x_{i} \partial_{j}} \frac{\partial^{2} u}{\partial x_{i} \partial_{j}} \\
& =\sum_{j} \frac{\partial}{\partial x_{j}}(\triangle u) \frac{\partial u}{\partial x_{j}}+|\operatorname{Hess} u|^{2} \\
& =<\nabla \triangle u, \nabla u>+|\operatorname{Hess} u|^{2}
\end{aligned}
$$

2 The Gradient Estimate

We now prove a gradient estimate for harmonic functions.
Theorem 2.1 There are dimensional constants $c(n)$ such that

$$
\begin{equation*}
\sup _{B_{r}\left(x_{0}\right)}|\nabla u| \leq \frac{c(n)}{r} \sup _{B_{2 r}\left(x_{0}\right)}|u| . \tag{3}
\end{equation*}
$$

for all harmonic functions u on $B_{2 r}\left(x_{0}\right) \subset \mathbb{R}^{n}$
Proof Note that it suffices to check the case $x_{0}=0$. Now proceed as follows.
Step 1. Show that a sub-harmonic function on a ball takes it's maximum on the boundary. Let $p: B_{2 r}\left(x_{0}\right) \rightarrow \mathbb{R}$ be sub-harmonic. Note that $\triangle|x|^{2}=2 n$, so $\triangle\left(p+\epsilon|x|^{2}\right)>0$ for all $\epsilon>0$, Therefore, by the maximum principle, $p+\epsilon|x|^{2}$ has no interior maximum, so it's maximum occurs on the boundary. Letting $\epsilon \rightarrow 0$ we see that p takes its maximum on the boundary as well.

Step 2. Prove the result for $r=1$. Take u harmonic on $B_{2}(0)$, and introduce a test function ϕ with $\phi=0$ on the boundary of $B_{2}(0)$ and $\phi>0$ on the interior. We will work with $\triangle\left(\phi^{2}|\nabla u|^{2}\right)$, and apply Bochner to simplify. Calculate

$$
\begin{aligned}
\triangle\left(\phi^{2}|\nabla u|^{2}\right) & =\phi^{2} \triangle|\nabla u|^{2}+|\nabla u|^{2} \triangle\left(\phi^{2}\right)+2 \nabla\left(\phi^{2}\right) \cdot \nabla\left(|\nabla u|^{2}\right) \\
& =2 \phi^{2} \mid \text { Hess }\left.u\right|^{2}+2 \phi^{2}<\nabla \triangle u, \nabla u>+|\nabla u|^{2} \triangle\left(\phi^{2}\right)+8 \sum_{i, j} \phi \frac{\partial \phi}{\partial x_{i}} \frac{\partial^{2} u}{\partial x_{j} x_{i}} \frac{\partial u}{\partial x_{j}} \\
& =2 \phi^{2} \mid \text { Hess }\left.u\right|^{2}+|\nabla u|^{2} \triangle\left(\phi^{2}\right)+8 \sum_{i, j} \phi \frac{\partial \phi}{\partial x_{i}} \frac{\partial^{2} u}{\partial x_{j} x_{i}} \frac{\partial u}{\partial x_{j}} .
\end{aligned}
$$

Define $a_{i j}=\phi \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$ and $b_{i j}=\frac{\partial \phi}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}$. We can re-write to get

$$
\begin{equation*}
\triangle\left(\phi^{2}|\nabla u|^{2}\right)=|\nabla u|^{2} \triangle\left(\phi^{2}\right)+2 \sum_{i, j}\left(a_{i j}^{2}+4 a_{i j} b_{i j}\right) . \tag{4}
\end{equation*}
$$

Note that $a_{i j}^{2}+4 a_{i j} b_{i j}+4 b_{i j}^{2}=\left(a_{i j}+2 b_{i j}\right)^{2} \geq 0$. Apply this to (4) to give

$$
\begin{equation*}
\triangle\left(\phi^{2}|\nabla u|^{2}\right) \geq|\nabla u|^{2} \triangle\left(\phi^{2}\right)-8 \sum_{i j} b_{i j}^{2} \tag{5}
\end{equation*}
$$

or, in our original notation,

$$
\begin{align*}
\triangle\left(\phi^{2}|\nabla u|^{2}\right) & \geq-8 \sum_{i j}\left(\frac{\partial \phi}{\partial x_{i}}\right)^{2}\left(\frac{\partial u}{\partial x_{j}}\right)^{2}+|\nabla u|^{2} \triangle\left(\phi^{2}\right) \tag{6}\\
& \left.\geq-8|\nabla \phi|^{2}|\nabla u|^{2}+\triangle\left(\phi^{2}\right)\right]|\nabla u|^{2} . \tag{7}
\end{align*}
$$

Observe that $\triangle\left(u^{2}\right)=2 u \Delta u+2|\nabla u|^{2}=2|\nabla u|^{2}$ since $\triangle u=0$. Let $k(n)=\mid \inf _{B_{2}(0)}\left(-8|\nabla \phi|^{2}+\right.$ $\left.\triangle\left(\phi^{2}\right)\right) \mid$, so

$$
\begin{equation*}
\triangle\left(\phi^{2}|\nabla u|^{2}+k(n) u^{2}\right) \geq 0 \text { on } B_{2}(0) . \tag{8}
\end{equation*}
$$

By step $1 \sup _{B_{2}(0)}\left(\phi^{2}|\nabla u|^{2}+k(n) u^{2}\right)$ occurs on the boundary. Furthermore ϕ vanishes on the boundary, so we get

$$
\begin{equation*}
\sup _{\delta B_{2}(0)} k(n) u^{2} \geq \sup _{B_{1}(0)} \phi^{2}|\nabla u|^{2} . \tag{9}
\end{equation*}
$$

Let $h(n)=\inf _{B_{1}(0)} \phi>0$ and rearrange to give

$$
\begin{equation*}
\frac{k(n)}{h(n)^{2}} \sup _{\delta B_{2}(0)} u^{2} \geq \sup _{B_{1}(0)}|\nabla u|^{2} \tag{10}
\end{equation*}
$$

Finally, take square roots to get

$$
\begin{equation*}
\sup _{B_{1}(0)}|\nabla u| \leq c(n) \sup _{B_{2}(0)}|u| \tag{11}
\end{equation*}
$$

as required, with $c(n)=\left(\frac{k(n)}{h(n)^{2}}\right)^{1 / 2}$. It is important to note that $c(n)$ really is a dimensional constant: although it depends on a choice of ϕ it doesn't depend on u.

Step 3. Extend this to general r. If u is harmonic on $B_{2 r}(0)$ define $\tilde{u}(x)=u(x / r)$, and note that \tilde{u} is harmonic on $B_{2}(0)$. Therefore, by (11),

$$
\begin{equation*}
\sup _{B_{1}\left(x_{0}\right)}|\nabla \tilde{u}| \leq c(n) \sup _{B_{2}(0)}|\tilde{u}| \tag{12}
\end{equation*}
$$

so

$$
\begin{equation*}
\sup _{B_{r}(0)} r|\nabla u| \leq c(n) \sup _{B_{2 r}(0)}|u| . \tag{13}
\end{equation*}
$$

This completes the proof.

