Five inequalities for Harmonic functions

In this lecture we will prove five inequalities for harmonic functions.

1 Bounding integrals of Harmonic functions

Proposition 1.1 Let r and s be real numbers with $0<r \leq s$, and $x \in \mathbb{R}^{n}$. There are constants c_{i} such that

$$
\begin{gather*}
\int_{B_{r}(x)} f^{2} \leq c_{1}\left(\frac{r}{s}\right)^{n} \int_{B_{s}(x)} f^{2}, \tag{1}\\
\int_{B_{r}(x)}\left(f-A_{x, r}\right)^{2} \leq c_{2}\left(\frac{r}{s}\right)^{n+2} \int_{B_{s}(x)}\left(f-A_{x, s}\right)^{2}, \tag{2}\\
\int_{B_{r}(x)}|\nabla f|^{2} \leq c_{3}\left(\frac{r}{s}\right)^{n} \int_{B_{s}(x)}|\nabla f|^{2}, \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{B_{r}(x)}\left|\nabla f-(\nabla f)_{x, r}\right|^{2} \leq c_{4}\left(\frac{r}{s}\right)^{n+2} \int_{B_{s}(x)}\left|\nabla f-(\nabla f)_{x, s}\right|^{2} . \tag{4}
\end{equation*}
$$

for all functions f that are harmonic on $B_{s}(x)$ with $A_{x, t},(\nabla f)_{x, t}$ the averages of f and ∇f over $B_{t}(x)$ respectively.

Before proving these we will prove another inequality, the mean value inequality.
Proposition 1.2 If f is harmonic on $B_{2 r}(x)$ then

$$
\begin{equation*}
\sup _{B_{r}(x)} f^{2} \leq \frac{2^{n}}{\operatorname{vol} B_{2 r}(x)} \int_{B_{r}(x)} f^{2} . \tag{5}
\end{equation*}
$$

Proof Pick $y \in B_{r}(x)$. By the mean value property (from lecture 1)

$$
\begin{equation*}
f(y)=\frac{1}{\operatorname{vol} B_{r}(y)} \int_{B_{r}(y)} f, \tag{6}
\end{equation*}
$$

So

$$
\begin{align*}
f^{2}(y) & =\left(\frac{1}{\operatorname{vol} B_{r}(y)} \int_{B_{r}(y)} f\right)^{2} \tag{7}\\
& =\left(\frac{1}{\operatorname{vol} B_{r}(y)}\right)^{2}\left(\int_{B_{r}(y)} f\right)^{2} \tag{8}\\
& \leq\left(\frac{1}{\operatorname{vol} B_{r}(y)}\right)^{2}\left(\int_{B_{r}(y)} f^{2}\right)\left(\int_{B_{r}(y)} 1^{2}\right) \tag{9}\\
& \leq \frac{1}{\operatorname{vol} B_{r}(y)} \int_{B_{r}(y)} f^{2} \tag{10}
\end{align*}
$$

by Cauchy Schwarz. Note that $B_{r}(y) \subset B_{2 r}(x)$, so we can expand the area of integration to get

$$
\begin{align*}
f^{2}(y) & \leq \frac{1}{\operatorname{vol} B_{r}(y)} \int_{B_{2 r}(x)} f^{2} \tag{11}\\
& \leq \frac{2^{n}}{\operatorname{vol} B_{2 r}(x)} \int_{B_{2 r}(x)} f^{2} . \tag{12}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\sup _{B_{r}(x)} f^{2} \leq \frac{2^{n}}{\operatorname{vol} B_{2 r}(x)} \int_{B_{2 r}(x)} f^{2} \tag{13}
\end{equation*}
$$

as required.
Now we'll use this to get our first inequality. If $r \leq s \leq 2 r$ then

$$
\begin{align*}
\int_{B_{r}(x)} f^{2} \leq \int_{B_{s}(x)} f^{2} & \tag{14}\\
& \leq\left(\frac{2 r}{s}\right)^{n} \int_{B_{s}(x)} f^{2} \tag{15}\\
& \leq 2^{n}\left(\frac{r}{s}\right)^{n} \int_{B_{s}(x)} f^{2} . \tag{16}
\end{align*}
$$

If instead $2 r \leq s$ then

$$
\begin{align*}
\sup _{B_{r}(x)} f^{2} & \leq \sup _{B_{s / 2}(x)} f^{2} \tag{17}\\
& \leq \frac{2^{n}}{\operatorname{vol} B_{s}(x)} \int_{B_{s}(x)} f^{2} \tag{18}
\end{align*}
$$

by the mean value inequality Therefore

$$
\begin{align*}
\frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)} f^{2} & \leq \frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)}\left(\frac{2^{n}}{\operatorname{vol} B_{s}(x)} \int_{B_{s}(x)} f^{2}\right) \tag{19}\\
& \leq \frac{2^{n}}{\operatorname{vol} B_{s}(x)} \int_{B_{s}(x)} f^{2} \tag{20}
\end{align*}
$$

and the ration of the volumes is $\left(\frac{r}{s}\right)^{n}$, so

$$
\begin{equation*}
\int_{B_{r}(x)} f^{2} \leq 2^{n}\left(\frac{r}{s}\right)^{n} \int_{B_{s}(x)} f^{2} \tag{21}
\end{equation*}
$$

for large s as well.
Note that $\triangle \frac{\partial f}{\partial x_{i}}=\frac{\partial}{\partial x_{i}} \triangle f=0$. Therefore 3 follows immediately from 1 . Now we'll prove 2. First consider the case $4 r \leq s$. Since $\frac{\partial f}{\partial x_{i}}$ is harmonic we can apply the mean value inequality to get

$$
\begin{equation*}
\sup _{B_{r}(x)}|\nabla f|^{2} \leq \frac{1}{\operatorname{vol} B_{2 r}(x)} \int_{B_{2 r}(x)}|\nabla f|^{2} . \tag{22}
\end{equation*}
$$

Now apply this. By the intermediate value theorem there is $y \in B_{r}(x)$ with $f(y)=A_{x, r}$. Pick $z \in B_{r}(x)$. Clearly $|f(z)-f(y)| \leq|z-y| \sup _{B_{r}(x)}|\nabla f| \leq 2 r \sup _{B_{r}(x)}|\nabla f|$. Therefore

$$
\begin{align*}
\frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)}\left(f-A_{x, r}\right)^{2} & \leq \frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)}\left(2 r \sup _{B_{r}(x)}|\nabla f|\right)^{2} \tag{23}\\
& \leq 4 r^{2} \sup _{B_{r}(x)}|\nabla f|^{2} \tag{24}\\
& \leq 4 r^{2} \sup _{B_{s / 4}(x)}|\nabla f|^{2} \tag{25}\\
& \leq 4 r^{2} \frac{1}{\operatorname{vol} B_{s / 2}(x)} \int_{B_{s / 2}(x)}|\nabla f|^{2} . \tag{26}
\end{align*}
$$

Apply Cacciopolli to get $\int_{B_{s / 2}(x)}|\nabla f|^{2} \leq \frac{1}{s^{2}} \int_{B_{s}(x)}\left(f-A_{x, s}\right)^{2}$, so

$$
\begin{equation*}
\frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)}\left(f-A_{x, r}\right)^{2} \leq \frac{4 r^{2}}{s^{2} \operatorname{vol} B_{s / 2}(x)} \int_{B_{s}(x)}\left(f-A_{x, s}\right)^{2}, \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B_{r}(x)}\left(f-A_{x, r}\right)^{2} \leq 2^{n+2}\left(\frac{r}{s}\right)^{n+2} \int_{B_{s}(x)}\left(f-A_{x, s}\right)^{2} \tag{28}
\end{equation*}
$$

as required. For $r \leq s \leq 4 r$ we simply note that

$$
\begin{equation*}
\int_{B_{r}(x)}\left(f-A_{x, r}\right)^{2} \leq 4^{n+2}\left(\frac{r}{s}\right)^{n+2} \int_{B_{r}(x)}\left(f-A_{x, r}\right)^{2} \leq 4^{n+2}\left(\frac{r}{s}\right)^{n+2} \int_{B_{s}(x)}\left(f-A_{x, r}\right)^{2} . \tag{29}
\end{equation*}
$$

This completes the proof of 2 . The final inequality, 4 , follows from 2 in exactly the same way that 3 follows from 1 .

We can also prove $1,2,3$, and 4 for L harmonic operators when L is a uniformly elliptic operator taking $L u=A_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$. In this case the constants c_{i} depend on the operator. Proofs are omitted.

