The decay of solutions of the heat equation, Campanato's lemma, and Morrey's Lemma

1 The decay of solutions of the heat equation

A few lectures ago we introduced the heat equation

$$
\begin{equation*}
\Delta u=u_{t} \tag{1}
\end{equation*}
$$

for functions of both space and time. we will now bound the decay of the Dirichlet energy and the L_{2} norm (ie $\int u^{2}$) of solutions. If u solves the heat equation on $\Omega \subset \mathbb{R}^{n}$ with $u=0$ on the boundary then

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} u^{2}=2 \int_{\Omega} u u_{t}=2 \int_{\Omega} u \triangle u=-2 \int_{\Omega}|\nabla u|^{2}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega}|\nabla u|^{2}=2 \int_{\Omega} \nabla u \cdot \nabla u_{t}=-2 \int_{\Omega} u_{t} \Delta u=-2 \int_{\Omega}|\triangle u|^{2} \tag{3}
\end{equation*}
$$

Also note that the dirichlet energy is decreasing, so

$$
\begin{equation*}
-2 \int_{\Omega}|\nabla u(\cdot, 0)|^{2} \leq \frac{d}{d t} \int_{\Omega} u^{2} \leq-2 \int_{\Omega}|\nabla u(\cdot, t)|^{2}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
-2 T \int_{\Omega}|\nabla u(\cdot, 0)|^{2} \leq \int_{\Omega} u^{2}(\cdot, T)-\int_{\Omega} u^{2}(\cdot, 0) \leq-2 T \int_{\Omega}|\nabla u(\cdot, T)|^{2} . \tag{5}
\end{equation*}
$$

2 Campanato's Lemma

Before discussing Campanato's lemma we need the concept of Holder continuity.
Definition Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function. f is α continuous at x_{0} if there are constants k and $0<\alpha \leq 1$ such that

$$
\begin{equation*}
f\left(x_{0}+x\right)-f\left(x_{0}\right) \leq k|x|^{\alpha} \tag{6}
\end{equation*}
$$

for small x_{0}. If f is everywhere Holder continuous for some constant α then we say that $f \in C^{\alpha}$.

Now take f continuous on \mathbb{R}^{n}. Let $x \in \mathbb{R}^{n}$, and define

$$
\begin{equation*}
A_{x, r}=\frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)} u . \tag{7}
\end{equation*}
$$

Campanato's Lemma is then
Lemma 2.1 (Campanato's Lemma) If there is a constant c such that

$$
\begin{equation*}
\int_{B_{r}(x)}\left(f-A_{x, r}\right)^{2} \leq c r^{2 \alpha+n} \tag{8}
\end{equation*}
$$

for all x and for small r then $f \in C^{\alpha}$.
Proof First we will bound $\left|A_{x, r}-A_{x, 2 r}\right|$ Calculate

$$
\begin{align*}
\left|A_{x, r}-A_{x, 2 r}\right|^{2} & =\left(\frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)} f-\frac{1}{\operatorname{vol} B_{2 r}(x)} \int_{B_{2 r}(x)} f\right)^{2} \tag{9}\\
& =\left(\frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)}\left(f-\frac{1}{\operatorname{vol} B_{2 r}(x)} \int_{B_{2 r}(x)} f\right)^{2}\right. \tag{10}\\
& \leq\left(\frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)}\left|f-A_{x, 2 r}\right|\right)^{2} \tag{11}\\
& \leq\left(\frac{2^{n}}{\operatorname{vol} B_{2 r}(x)} \int_{B_{2 r}(x)}\left|f-A_{x, 2 r}\right|\right)^{2} \tag{12}
\end{align*}
$$

By Cauchy-Schwarz $\left(\int g h\right)^{2} \leq\left(\int g^{2}\right)\left(\int h^{2}\right)$. Apply this with $g=1$ and $h=f-A_{x, 2 r}$ to get

$$
\begin{equation*}
\left|A_{x, r}-A_{x, 2 r}\right|^{2} \leq \frac{2^{2 n}}{\operatorname{vol} B_{2 r}(x)} \int_{B_{2 r}(x)}\left(f-A_{x, 2 r}\right)^{2} . \tag{13}
\end{equation*}
$$

Now use the condition, 8 , so

$$
\begin{equation*}
\left|A_{x, r}-A_{x, 2 r}\right|^{2} \leq \frac{2^{2 n} c(2 r)^{2 \alpha+n}}{\operatorname{vol} B_{2 r}(x)} \tag{14}
\end{equation*}
$$

and we can pick a new dimensional constant $C=\sqrt{\frac{c 2^{2 n+2 \alpha}}{\operatorname{vol} B_{1}(x)}}$ so that

$$
\begin{equation*}
\left|A_{x, r}-A_{x, 2 r}\right| \leq C r^{\alpha} . \tag{15}
\end{equation*}
$$

We apply this to our problem. Note that $A_{x, 2^{-k} r}-A_{x, r}=\sum_{i=0}^{i=k-1} A_{x, 2^{-i-1} r}-A_{x, 2^{-i} r}$, so

$$
\begin{align*}
\left|A_{x, 2^{-k} r}-A_{x, r}\right| & \leq \sum_{i=0}^{i=k-1}\left|A_{x, 2^{-i-1} r}-A_{x, 2^{-i} r}\right| \tag{16}\\
& \leq \sum_{i=0}^{i=k-1} C\left(2^{-i-1} r\right)^{\alpha} \tag{17}\\
& \leq C r^{\alpha} 2^{-\alpha} \sum_{i=0}^{i=k-1} 2^{-i \alpha} . \tag{18}
\end{align*}
$$

This is simply the sum of a geometric series, so we can use the usual formula to get

$$
\begin{equation*}
\left|A_{x, 2^{-k_{r}}}-A_{x, r}\right| \leq \frac{1-2^{-k \alpha}}{1-2^{-\alpha}} C r^{\alpha} 2^{-\alpha} \tag{19}
\end{equation*}
$$

Now let $k \rightarrow \infty$ to get

$$
\begin{equation*}
\left|f(x)-A_{x, r}\right| \leq \frac{1}{1-2^{-\alpha}} C r^{\alpha} 2^{-\alpha} \tag{20}
\end{equation*}
$$

Now pick another point $y \in \mathbb{R}^{n}$. Clearly we also have $\left|f(y)-A_{y, s}\right| \leq \frac{1}{1-2^{-\alpha}} C s^{\alpha} 2^{-\alpha}$. Now we'll estimate $\left|A_{x, r}-A_{y, s}\right|$. Calculate

$$
\begin{align*}
\left|A_{x, r}-A_{y, s}\right|^{2} & =\left|\frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)} f-A_{y, s}\right|^{2} \tag{21}\\
& =\left\lvert\, \frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)}\left(f-\left.A_{y, s}\right|^{2}\right.\right. \tag{22}\\
& \leq\left(\frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)}\left|f-A_{y, s}\right|\right)^{2} \tag{23}
\end{align*}
$$

and apply Cauchy-Schwaz as before to get

$$
\begin{equation*}
\left|A_{x, r}-A_{y, s}\right|^{2} \leq \frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{r}(x)}\left(f-A_{y, s}\right)^{2} \tag{24}
\end{equation*}
$$

Pick $r=|x-y|$ and $s=2|x-y|$ so that $B_{r}(x) \subset B_{s}(y)$. Therefore

$$
\begin{align*}
\left|A_{x, r}-A_{y, s}\right|^{2} & \leq \frac{1}{\operatorname{vol} B_{r}(x)} \int_{B_{s}(y)}\left(f-A_{y, s}\right)^{2} \tag{25}\\
& \leq \frac{\operatorname{vol} B_{s}(y)}{\operatorname{vol} B_{r}(x)} \frac{1}{\operatorname{vol} B_{s}(y)} \int_{B_{s}(y)}\left(f-A_{y, s}\right)^{2} \tag{26}
\end{align*}
$$

and, by our hypothesis,

$$
\begin{equation*}
\left|A_{x, r}-A_{y, s}\right|^{2} \leq \frac{\operatorname{vol} B_{s}(y)}{\operatorname{vol} B_{r}(x)} c s^{2 \alpha+n} \tag{27}
\end{equation*}
$$

Plugging in our values for r and s we have

$$
\begin{equation*}
\left|A_{x, r}-A_{y, s}\right|^{2} \leq 2^{n} c(2|x-y|)^{2 \alpha+n} \tag{28}
\end{equation*}
$$

and we're only interested in small $|x-y|$, so we can take $2|x-y| \leq 1$ to get

$$
\begin{equation*}
\left|A_{x, r}-A_{y, s}\right|^{2} \leq 2^{n} c(2|x-y|)^{2 \alpha} . \tag{29}
\end{equation*}
$$

At last we can calculate

$$
\begin{align*}
|f(x)-f(y)| & \leq\left|f(x)-A_{x, r}\right|+\left|A_{x, r}-A_{y, s}\right|+\left|A_{y, s}-f(y)\right| \tag{30}\\
& \leq \frac{1}{1-2^{-\alpha}} C r^{\alpha} 2^{-\alpha}+2^{n / 2} \sqrt{c}(2|x-y|)^{\alpha}+\frac{1}{1-2^{-\alpha}} C s^{\alpha} 2^{-\alpha} \tag{31}\\
& \leq\left(\frac{C 2^{-\alpha}}{1-2^{-\alpha}}+2^{n / 2+\alpha} \sqrt{c}+\frac{1}{1-2^{-\alpha}} C\right)|x-y|^{\alpha} . \tag{32}
\end{align*}
$$

This completes the proof.

3 Morrey's Lemma

Morrey's lemma is very similar to Campanato's lemma, but uses a condition on Dirichlet energy rather than L_{2} norm.

Lemma 3.1 (Morrey's lemma) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous. If there is a constant c_{1} with

$$
\begin{equation*}
\int_{B_{r}(x)}|\nabla f|^{2} \leq c_{1} r^{n-2-2 \alpha} \tag{33}
\end{equation*}
$$

for all x and small r then $f \in C^{\alpha}$.
Proof This is a straightforward consequence of Campanato and Poincare. By Poincare there is a constant c_{2} such that

$$
\begin{equation*}
\int_{B_{r}(x)}\left(f-A_{x, r}\right)^{2} \leq c_{2} r^{2} \int_{B_{r}(x)}|\nabla f|^{2} \leq c_{1} c_{2} r^{n+2 \alpha} \tag{34}
\end{equation*}
$$

by hypothesis. The result then follows by Campanato.

