Lecture 14: A gradient estimate for the heat equation on a ball.

1 Adapting the proof of the gradient estimate to \mathbb{R}^{n}

Last time we proved a gradient estimate for solutions of the heat equation on a torus. In this lecture we will adapt the argument to prove the same theorem on \mathbb{R}^{n}.

Theorem 1.1 If $u: \mathbb{R}^{n} \times[0, \infty) \rightarrow \mathbb{R}$ is positive and satisfies the heat equation then

$$
\begin{equation*}
t\left(\frac{|\nabla u|^{2}}{u^{2}}-\frac{u_{t}}{u}\right) \leq \frac{n}{2} \tag{1}
\end{equation*}
$$

We will sketch the proof. We work on an interval $[0, T]$, and note that the result we want follows immediately from this. Define $f=\log u$ and $F=t\left(\frac{|\nabla u|^{2}}{u^{2}}-\frac{u_{t}}{u}\right)$. Let ϕ be a cutoff function on the ball $B_{1}(0)$ with $0<\phi<1$ on the interior and $\phi=0$ on the boundary. We can stretch this to get a cutoff function ϕ_{r} on $B_{r}(0)$ by taking $\phi_{r}(x)=\phi(x / r)$. If F is non positive the result is trivially true, so we can assume that $\phi_{r} F$ has an interior maximum without loss of generality. At this maximum

$$
\begin{equation*}
\triangle\left(\phi_{r} F\right) \leq 0, \frac{d\left(\phi_{r} F\right)}{d t} \geq 0, \text { and } \phi_{r} \nabla F=-F \nabla \phi_{r} \tag{2}
\end{equation*}
$$

We'll use these to get a bound on F. Calculate

$$
\begin{align*}
0 & \geq\left(\triangle-\frac{d}{d t}\right)\left(\phi_{r} F\right) \tag{3}\\
& \geq \phi_{r} \triangle F+2 \nabla F \cdot \nabla \phi_{r}+F \triangle \phi_{r}-\phi_{r} \frac{d F}{d t} \tag{4}
\end{align*}
$$

We need to estimate some of these. The calculations are very similar to last time. We start with

$$
\begin{align*}
\Delta F & =t \triangle\left(\frac{|\nabla u|^{2}}{u^{2}}-\frac{u_{t}}{u}\right) \tag{5}\\
& =t \triangle\left(|\nabla f|^{2}-f_{t}\right) \tag{6}\\
& =2 t\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)^{2}+2 t \nabla(\triangle f) \cdot \nabla f-t \triangle f_{t} \tag{7}
\end{align*}
$$

by Bochner. Calculate $\triangle f=\frac{\partial}{\partial x_{i}} \frac{\partial u / \partial x_{i}}{u}=\frac{\Delta u}{u}-\frac{|\nabla u|^{2}}{u^{2}}=-\frac{F}{t}$ to get

$$
\begin{equation*}
\Delta F=2 t\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)^{2}-2 \nabla F \cdot \nabla f-t \triangle f_{t} . \tag{8}
\end{equation*}
$$

Recall the inequality $\left(\sum A_{i} i\right)^{2} \leq n \sum\left(A_{i i}^{2}\right)$ for all matrices A from last time, and apply it to the hessian of f to give

$$
\begin{align*}
\Delta F & =\frac{2 t}{n}(\triangle f)^{2}-2 \nabla F \cdot \nabla f-t \triangle f_{t} \tag{9}\\
& \geq \frac{2 F^{2}}{n t}-2 \nabla F \cdot \nabla f-\triangle f_{t} \tag{10}
\end{align*}
$$

We also need an estimate on F_{t}. We have

$$
\begin{equation*}
F_{t}=|\nabla f|^{2}-f_{t}+t\left(2 \nabla f \cdot \nabla f_{t}\right)-t f_{t t}, \tag{11}
\end{equation*}
$$

and $\triangle f+|\nabla f|^{2}=f_{t}$, so

$$
\begin{align*}
F_{t} & =|\nabla f|^{2}-f_{t}+t\left(2 \nabla f \cdot \nabla f_{t}\right)-t\left(\Delta f+|\nabla f|^{2}\right)_{t} \tag{12}\\
& =\frac{F}{t}-t \triangle f_{t} . \tag{13}
\end{align*}
$$

Putting 4, 10 and 13 together we get

$$
\begin{equation*}
0 \geq \phi_{r}\left(\frac{2 F^{2}}{n t}-2 \nabla F \cdot \nabla f-\frac{F}{t}\right)+2 \nabla F \cdot \nabla \phi_{r}+F \triangle \phi_{r} . \tag{14}
\end{equation*}
$$

Recall that $\phi_{r} \nabla F=-F \nabla \phi_{r}$, so

$$
\begin{align*}
0 & \geq \phi_{r}\left(\frac{2 F^{2}}{n t}+\frac{2 F}{\phi_{r}} \nabla \phi_{r} \cdot \nabla f-\frac{F}{t}\right)-\frac{2 F}{\phi_{r}}\left|\nabla \phi_{r}\right|+F \triangle \phi_{r} \tag{15}\\
& \geq F \phi_{r}\left(\frac{2 F}{n t}+\frac{2}{\phi_{r}} \nabla \phi_{r} \cdot \nabla f-\frac{1}{t}-2 \frac{\left|\nabla \phi_{r}\right|^{2}}{\phi_{r}^{2}}+\frac{\triangle \phi_{r}}{\phi_{r}}\right) . \tag{16}
\end{align*}
$$

Now use an absorbing inequality $\frac{\partial \phi_{r}}{\partial x_{i}} \frac{\partial f}{\partial x_{i}} \geq-\frac{1}{\epsilon}\left(\frac{\partial \phi_{r}}{\partial x_{i}}\right)^{2}-\epsilon\left(\frac{\partial f}{\partial x_{i}}\right)^{2}$ for all $\epsilon>0$. to show that

$$
\begin{equation*}
\nabla \phi_{r} \cdot \nabla f \geq-\frac{1}{\epsilon}\left|\nabla \phi_{r}\right|^{2}-\epsilon|\nabla f|^{2} \tag{17}
\end{equation*}
$$

for all $\epsilon>0$. Consequently

$$
\begin{equation*}
0 \geq F \phi_{r}\left(\frac{2 F}{n t}-\frac{2}{\phi_{r}}\left(\frac{1}{\epsilon}\left|\nabla \phi_{r}\right|^{2}+\epsilon|\nabla f|^{2}\right)-\frac{1}{t}-2 \frac{\left|\nabla \phi_{r}\right|^{2}}{\phi_{r}^{2}}+\frac{\triangle \phi_{r}}{\phi_{r}}\right) . \tag{18}
\end{equation*}
$$

Let $r \rightarrow \infty$ so that $\left|\nabla \phi_{r}\right|$ and $\triangle \phi_{r}$ tend to zero and $\phi_{r} \rightarrow 1$, and get

$$
\begin{equation*}
0 \geq F\left(\frac{2 F}{n t}-2 \epsilon|\nabla f|^{2}-\frac{1}{t}\right) \tag{19}
\end{equation*}
$$

Finally we let $\epsilon \rightarrow 0$ and recover

$$
\begin{equation*}
0 \geq \frac{F}{t}\left(\frac{2 F}{n}-1\right) \tag{20}
\end{equation*}
$$

From this we get $F \leq n / 2$ as required.

