The Heat equation. $\left[t_{1}>t_{2}\right]$

We've spent a lot of time concentrating on the laplace equation, but there are other important PDE's. One example is the heat equation, which we will study in this lecture. Consider a function $u: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ of both time and space. The heat equation is

$$
\begin{equation*}
\Delta u=\frac{\partial u}{\partial t} . \tag{1}
\end{equation*}
$$

In this lecture we will prove a gradient estimate and a Harnack inequality for functions satisfying the heat equation on a torus $T^{n}=S^{1} \times S^{1} \times \cdots \times S^{1}$, since this turns out to be easier than doing the proof for a ball.

1 A gradient estimate for a torus

Theorem 1.1 If u is positive and satisfies the heat equation on the cylinder $T^{n} \times \mathbb{R}$ then

$$
\begin{equation*}
\frac{|\nabla u|^{2}}{u^{2}}-\frac{1}{u} \frac{\partial u}{\partial t} \leq \frac{n}{2 t} . \tag{2}
\end{equation*}
$$

Proof For this proof we will use the notation $g_{t}=\frac{\partial g}{\partial t}$. Define $f=\log u$, and calculate

$$
\begin{aligned}
\left(\triangle-\frac{\partial}{\partial t}\right) f & =\frac{\Delta u}{u}-\frac{|\nabla u|^{2}}{u^{2}}-\frac{1}{u} \frac{\partial u}{\partial t} \\
& =-\frac{|\nabla u|^{2}}{u^{2}} \\
& =-|\nabla f|^{2} .
\end{aligned}
$$

Also define $F=t\left(|\nabla f|^{2}-f_{t}\right)$. Note that we actually want to bound $\frac{F}{t}$. We need to estimate $\left(\triangle-\frac{\partial}{\partial t}\right) F$. Observe that

$$
\begin{align*}
\Delta F & =t\left(\triangle|\nabla f|^{2}-\triangle f_{t}\right) \tag{3}\\
& =2 t\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)^{2}+2 t<\nabla \triangle f, \triangle f>-t \Delta f_{t} \tag{4}
\end{align*}
$$

by Bochner. Recall that, for any matrix $A_{i j}, \sum_{i, j} A_{i j}^{2} \geq \frac{\left(\sum_{i} A_{i i}\right)^{2}}{n}$ (We saw this in lecture 10 , and it essentially because the average of the square is greater than the square of the average). Therefore

$$
\begin{equation*}
\triangle F \geq \frac{2 t(\triangle f)^{2}}{n}+2 t<\nabla \triangle f, \triangle f>-t \triangle f_{t} \tag{5}
\end{equation*}
$$

We also have $\triangle f=-|\nabla f|^{2}+f_{t}=-\frac{F}{t}$, so

$$
\begin{equation*}
\triangle F \geq \frac{2 F^{2}}{n t}-2<\nabla F, \nabla f>-t \triangle f_{t} \tag{6}
\end{equation*}
$$

Now work on F_{t}. Clearly

$$
\begin{equation*}
F_{t}=|\nabla f|^{2}-f_{t}+t\left(2 \nabla f \cdot \nabla f_{t}\right)-t f_{t t} . \tag{7}
\end{equation*}
$$

Note that $\triangle f+|\nabla f|^{2}=f_{t}$, so

$$
\begin{align*}
F_{t} & =|\nabla f|^{2}-f_{t}+t\left(2 \nabla f \cdot \nabla f_{t}\right)-t\left(\triangle f+|\nabla f|^{2}\right)_{t} \tag{8}\\
& =|\nabla f|^{2}-f_{t}-t \triangle f_{t} . \tag{9}
\end{align*}
$$

Putting together (6) and (9) we get

$$
\begin{equation*}
\left(\triangle-\frac{\partial}{\partial t}\right) F \geq \frac{2 F^{2}}{n t}-2<\nabla F, \nabla f>-\frac{F}{t} . \tag{10}
\end{equation*}
$$

At a maximum of F we have $\nabla F=0, \triangle F \leq 0$ and $F_{t}=0$. Therefore

$$
\begin{equation*}
0 \geq \frac{2}{n t}\left(F^{2}-\frac{n F}{2}\right) \tag{11}
\end{equation*}
$$

Therefore $F \leq \frac{n}{2}$. Substituting in for F gives

$$
\begin{equation*}
\frac{|\nabla u|^{2}}{u^{2}}-\frac{u_{t}}{u} \leq \frac{n}{2 t}, \tag{12}
\end{equation*}
$$

which is what we wanted.

2 A Harnack inequality for a torus

Now we'll try to get a Harnack inequality out of this. Pick $\left(x_{1}, t_{1}\right)$ and $\left(x_{2}, t_{2}\right)$ with $t_{2} \geq t_{1}$, and let $\eta(t)=\left(x_{2}, t_{2}\right)+t\left(\left(x_{1}, t_{1}\right)-\left(x_{2}, t_{2}\right)\right)$ be the straight line path from one to the other. Then

$$
\begin{equation*}
f\left(x_{1}, t_{1}\right)-f\left(x_{2}, t_{2}\right)=\int_{0}^{1} \frac{d f(\eta)}{d s} d s \tag{13}
\end{equation*}
$$

Calculate $\frac{d f(\eta)}{d s}=\nabla f \cdot\left(x_{1}-x_{2}\right)+f_{t}\left(t_{1}-t_{2}\right)$. By inequality (12)

$$
f_{t}\left(t_{1}-t_{2}\right) \leq \frac{n}{2 t}\left(t_{2}-t_{1}\right)-|\nabla f|^{2}\left(t_{2}-t_{1}\right) .
$$

Together with (13) we get

$$
\begin{equation*}
f\left(x_{1}, t_{1}\right)-f\left(x_{2}, t_{2}\right) \leq \int_{0}^{1}|\nabla f|\left|x_{2}-x_{1}\right|-|\nabla f|^{2}\left(t_{2}-t_{1}\right)+\frac{n\left(t_{2}-t_{1}\right)}{2 t} d s \tag{14}
\end{equation*}
$$

The integrand is a quadratic in $|\nabla f|^{2}$ with negative leading coefficient, so it has a maximum at $|\nabla f|=\frac{\left|x_{2}-x_{1}\right|}{2\left(t_{2}-t_{1}\right)}$, so

$$
\begin{equation*}
f\left(x_{1}, t_{1}\right)-f\left(x_{2}, t_{2}\right) \leq \int_{0}^{1} \frac{\left|x_{2}-x_{1}\right|}{2\left(t_{2}-t_{1}\right)}\left|x_{2}-x_{1}\right|-\left(\frac{\left|x_{2}-x_{1}\right|}{2\left(t_{2}-t_{1}\right)}\right)^{2}\left(t_{2}-t_{1}\right)+\left(t_{2}-t_{1}\right) \frac{n}{2 t} d s \tag{15}
\end{equation*}
$$

We split this up. for the first part

$$
\begin{equation*}
\int_{0}^{1} \frac{\left|x_{2}-x_{1}\right|}{2\left(t_{2}-t_{1}\right)}\left|x_{2}-x_{1}\right|-\left(\frac{\left|x_{2}-x_{1}\right|}{2\left(t_{2}-t_{1}\right)}\right)^{2}\left(t_{2}-t_{1}\right) d s=\frac{\left|x_{2}-x_{1}\right|}{4\left(t_{2}-t_{1}\right)} \tag{16}
\end{equation*}
$$

and for the second

$$
\begin{equation*}
\int_{0}^{1}\left(t_{2}-t_{1}\right) \frac{n}{2 t} d s=\left(t_{2}-t_{1}\right) \frac{n}{2} \int_{0}^{1} \frac{1}{t_{2}+s\left(t_{1}-t_{2}\right)} d s=-\frac{n}{2} \int_{t_{2}}^{t_{1}} \frac{1}{v} d v=\frac{n}{2} \log \frac{t_{2}}{t_{1}} . \tag{17}
\end{equation*}
$$

Putting these together we have

$$
\begin{equation*}
\log u\left(x_{1} \cdot t_{1}\right)-\log u\left(x_{2}, x_{1}\right) \leq \frac{\left|x_{2}-x_{1}\right|}{4\left(t_{2}-t_{1}\right.}+\frac{n}{2} \log \frac{t_{2}}{t_{1}} . \tag{18}
\end{equation*}
$$

Taking exponents we get a harnack inequality,

$$
\begin{equation*}
\frac{u\left(x_{1} \cdot t_{1}\right)}{u\left(x_{2}, t_{2}\right)} \leq\left(\frac{t_{2}}{t_{1}}\right)^{n / 2} \exp \left(\frac{\left|x_{2}-x_{1}\right|}{4\left(t_{2}-t_{1}\right)}\right) . \tag{19}
\end{equation*}
$$

