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The Heat equation.[t1 > t2]


We’ve spent a lot of time concentrating on the laplace equation, but there are other 
important PDE’s. One example is the heat equation, which we will study in this lecture. 
Consider a function u : Rn × R R of both time and space. The heat equation is → 

∂u �u = . (1)
∂t 

In this lecture we will prove a gradient estimate and a Harnack inequality for functions 
satisfying the heat equation on a torus T n = S1 × S1 × · · · × S1 , since this turns out to be 
easier than doing the proof for a ball. 

A gradient estimate for a torus 

Theorem 1.1 If u is positive and satisfies the heat equation on the cylinder T n × R then 

|�u|2 1 ∂u n 
u2 − 

u ∂t 
≤ 

2t
. (2) 

Proof For this proof we will use the notation gt = ∂g . Define f = log u, and calculate ∂t 
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Also define F 
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= t(|�f |2 − ft). Note that we actually want to bound 
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∂t )F . Observe that 

F 
t . We need to 

�F = 

= 

t(�|�f |2 − �ft) 

2t 

� 
∂2f 

∂xi∂xj 

�2 

+ 2t < ��f, �f > −t�ft 

(3) 

(4) 

1 



2 

� P 

by Bochner. Recall that, for any matrix Aij , A2 
ij ≥ ( i Aii)

2 

(We saw this in lecture i,j n 
10, and it essentially because the average of the square is greater than the square of the 
average). Therefore 

�F ≥ 
2t(�f)2 

+ 2t < ��f, �f > −t�ft. (5) 
n 

We also have �f = 2 + ft = t , so −|�f | − F


2F 2


− 2 < �F, �f > −t�ft. (6)�F ≥ 
nt


Now work on Ft. Clearly


Ft = |�f |2 − ft + t(2�f · �ft) − tftt. (7) 

Note that �f + |�f 2 = ft, so |

Ft = |�f |2 − ft + t(2�f · �ft) − t(�f + |�f |2)t (8) 
= − ft − t�ft. (9)|�f |2 

Putting together (6) and (9) we get 

∂ 2F 2 F
)F ≥ − 2 < �F, �f > − . (10)(� − 

∂t nt t 
At a maximum of F we have �F = 0, �F ≤ 0 and Ft = 0. Therefore 
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Therefore F ≤ n . Substituting in for F gives 2 

2 ut n 
, (12)
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| − 
u 
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2t 
which is what we wanted. 

A Harnack inequality for a torus 

Now we’ll try to get a Harnack inequality out of this. Pick (x1, t1) and (x2, t2) with t2 ≥ t1, 
and let η(t) = (x2, t2) + t((x1, t1) − (x2, t2)) be the straight line path from one to the other. 
Then 

� 1 df(η)
f(x1, t1) − f(x2, t2) = ds. (13)

ds0 
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Calculate df (η) = �f · (x1 − x2) + ft(t1 − t2). By inequality (12) ds 

n 
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Together with (13) we get � 1 
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The integrand is a quadratic in |�f 2 with negative leading coefficient, so it has a maximum |
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We split this up. for the first part � 1 
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and for the second � 1 

0 
(t2 − t1) 

n 
2t 

ds = (t2 − t1) 
n 
2 

� 1 

0 

1 
t2 + s(t1 − t2) 

ds = − 
n 
2 

� t1 

t2 

1 
v 
dv = 

n 
2 

log 
t2 

t1 
. (17) 

Putting these together we have 

log u(x1.t1) − log u(x2, x1) ≤ 
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Taking exponents we get a harnack inequality, 
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