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An Improved Gradient Estimate for Harmonic Functions 

The new gradient estimate 

Last lecture we used an improved form of the gradient estimate for harmonic functions. 
We will now prove it. 

Theorem 1.1 There are dimensional constants c such that 

u c 
sup 

|� | ≤ 
r 

(1) 
Br u 

for all positive harmonic functions u : B2r R.→

Proof We will prove the result for r = 1 and claim that the general case follows immedi
ately by scalng. As usual we take a nonnegative test function φ : B2 → R with φ = 0 on 

2
2∂B2. Define v = log u and w = |�v| . Note that �v = �u and �v = − |�u| = −w. We 2u u

start by bounding �(wφ4) + 2�v · �(wφ4) by a quartic polynomial in w1/2φ. Calculate 

2 w = v� �|� | �2
∂2v 

= 2 + 2 < ��v, �v > 
∂xi∂xj � �2

∂2v 
= 2 − 2 < �w, �v > 

∂xi∂xj 

by the Bochner formula. Therefore 

�(wφ4) = φ4 w + 2�φ4 (2)�� �2

· �w + w�φ4 

∂2

= 2φ4 v − 2φ4 < �w, �v > +2�φ4 · �w + w�φ4 . (3)
∂xi∂xj 

Now try to find our quartic bound. Consider 

�(wφ4) + 2�v · �(wφ4) = �(wφ4) + 2φ4 w + 2w� . (4)�v · � v · �φ4 
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Substitute for �(wφ4) from (3) to get � �2
∂2v �(wφ4) + 2�v · �(wφ4) = 2φ4 

∂xi∂xj 
+ 2�φ4 · �w + w�φ4 + 2w�v · �φ4 . (5) 

We need to write the second term out in terms of partial derivatives. Calculate 

2 

2�φ4 · �w = 2 
∂φ4 ∂|�v|
∂xi ∂xi 

∂φ4 ∂v ∂2v 
= 4 ,

∂xi ∂xj ∂xj ∂xi 

so 

� �2
∂2v ∂φ4 ∂v ∂2v �(wφ4) + 2�v · �(wφ4) = 2φ4 

∂xi∂xj 
+ 4 . (6)

∂xi ∂xj ∂xj ∂xi 
+ w�φ4 + 2w�v · �φ4 

∂2vUse an absorbing inequality to simplify. Let aij = φ2 
∂xi∂xj 

and bij = ∂φ4 ∂v . Note that ∂xi ∂xj 

ij . Together with (6) we have aij + 4aij bij ≥ −4b2 

� �2
∂2

�(wφ4) + 2�v · �(wφ4) 
v − 4b2≥ φ4 

∂xi∂xj 
ij + w�φ4 + 2w�v · �φ4 

� �2
∂2v 2≥ φ4 

∂xi∂xj 
− 4|�φ4| |�v|2 + w�φ4 + 2w�v · �φ4 

� �2
∂2v − 16φ6 2 + (4φ3�φ + 12φ2 2)w − 8φ3≥ φ4 

∂xi∂xj 
|�φ|2|�v| |�φ| w|�v||�φ| 

since φ and w are both nonnegative. Observe that φ, |�φ , and �φ are bounded, so there |
are constants c1, c2, c3 such that 

� �2
∂2v �(wφ4) + 2�v · �(wφ4) ≥ φ4 

∂xi∂xj 
− c1φ

2 . (7)|�v|2 + c2φ
2 w − c3φ

3 w|�v|

Recall that for any collection of real numbers the average of the squares is greater than 
the square of the average. Thus for any matrix A � 

A2 � �� �2A2 
ij ii Aii 

. 
n 

≥ 
n 

≥ 
n 
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Apply this above to give � 
∂2

�2 �� ∂2
�2 

v 1 v 
∂xi∂xj 

≥ 
n ∂xi 

2 =
(�

n

v)2 

, 

and substitute this into (7) ; 

�(wφ4) + 2�v · �(wφ4) ≥ φ4 (�v)2 

− c1φ
2 . (8) 

n 
|�v|2 + c2φ

2 w − c3φ
3 w|�v|

Observe that �v = 2 = −w, so we have −|�v|

2 
3/2�(wφ4) + 2�v · �(wφ4) ≥ φ4 w − c1φ

2 w + c2φ
2 w − c3φ

3 w . (9) 
n 

This is the bound we were looking for. 
Now apply this. Since φ is zero on the boundary of B2, φ4w takes it’s maximum in the 

interior. Let x be the maximum. At x, �(φ4w) = 0 and 0 ≥ �(φ4w), so 

1
0 ≥ 

n 
(φw1/2)4 + (c2 − c1)(φw1/2)2 − c3(φw1/2)3 . (10) 

This is a quartic polynomial in φw1/2 with positive leading coefficient. Such polynomials 
are positive for large argument, so there is a constant k with φ(x)(w(x))1/2 ≤ k. Note that | |
k depends only on the coefficients of the polynomial. The coefficients themselves depend 
only on dimension, so k also depends only on dimension. Choose 0 ≤ φ ≤ 1. Then 

sup φ4 w = (φ(x))4 w(x) ≤ (φ(x)(w(x))1/2)2 ≤ k2 . (11) 
B2 

Finally we choose φ to be identically one on B1, so 

2 

sup 
|�u|

= sup φ4 w (12)
2 

B1 u B1 

sup φ4 w (13)≤ 
B2 

(14)≤ k2 

and take square roots to give our result. 

The gradient estimate we proved earlier follows easily from this; this is a stronger 
result. As we saw last time the Harnack inequality is also a reasonably straightforward 
consequence. The only major annoyance is that we needed u > 0. 
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