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Lecture 20: Holder continuity of Harmonic functions. 

Holder continuity of Harmonic functions 

In this lecture we will show that harmonic functions need to have a degree of regularity, 
specifically they must be Holder continuous. 

Theorem 1.1 Let L be a uniformly elliptic operator in divergence form taking 

∂ ∂u 
Lu = Aij 

∂xj 
. (1)

∂xi 

If u : Rn R is an L harmonic function then u is holder continuous. → 

The proof is a little involved, so we will first give a sketch of the proof, and then go back 
to fill in the details. The aim is to use Morrey’s lemma. 

Proof Pick x0 ∈ Rn, and define the operator �L by 

∂ ∂f ∂2f 
Lf = Aij (x0) = Aij (x0) . (2)

∂xi ∂xj ∂xi∂xj 

Pick s > 0, and let v be an L harmonic function with v = u on ∂Bs(x0). Note that the 
inequalities we proved in lecture 16 apply to v so, in particular, 

n 
2 (3) 

Br (x0 ) 
|�v| ≤ k 

r

s Bs(x0) 
|�v|2 

for all r < s. We use this and the inequality (a + b)2 ≤ 2a2 + 2b2 to estimate 

2 2 

Br (x0) 
|�v|2 + 2 (4) 

Br (x0) 
|�u| ≤ 2 

Br (x0 ) 
|�(u − v)|

r n 
2≤ 2k 

Bs(x0) 
|�v|2 + 2 (5) 

s Br (x0 ) 
|�(u − v)|

r n 
2≤ 2k 

Bs(x0) 
|�v|2 + 2 . (6) 

s Bs(x0) 
|�(u − v)|

Now use a lemma which we will prove later. 
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Lemma 1.2 Let ||A− A(x0)|| = supBs(x0 ),i,j Aij − Aij (x0) . Then | |� � �2 � 
2 n 2 

Bs(x0) 
|�(u− v)| ≤ 

||A− A(x0)||
λ Bs(x0) 

|�v| (7) 

and � � �2 � 
2 n 2 

Bs(x0 ) 
|�(u− v)| ≤ 

||A− A(x0)||
λ Bs(x0) 

|�u| (8) 

By the first of these we get 

� � � �2 
�� 

n n2 r 2 

Br (x0) 
|�u| ≤ 2k

s 
+ 2 

||A− A(x0)|| 
Bs (x0) 

|�v| . (9)
λ 

Now we need to estimate this last integral in terms of u. We have 

2 2 

Bs(x0) 
|�u|2 + 2 ) (10) 

Bs(x0) 
|�v| ≤ 2


n


Bs(x0) 
|�(u− v |�2 
�� 

22 + 2 
||A− A(x0)|| 

Bs(x0) 
|�u| (11)≤ 

λ 

by lemma 1.2. Plugging this back into ?? gives 

� � � � � �2 
�� � �2 

�� 
r n 

2 n 2 

Br (x0) 
|�u| ≤ 2k

s 
+ 2 

||A− A(x0)|| 2 + 2 
||A− A(x0)|| 

. 
λ λ Bs(x0 ) 

|�u|

(12) 
By choosing s small we can get n||A − A(x0)|| as small as we like. Therefore, for some 
constant k� and for any δ > 0 we can pick a small s so that � � � � �� 

r n 
2 + δ 

Bs(x0 ) 
|�u|2 . (13) 

Br (x0) 
|�u| ≤ k� 

s 

We need one more lemma. 

Lemma 1.3 Let φ be a positive and increasing function on the positive reals, and let α, c 
be positive constants. For 0 < γ < α there is δ > 0 such that �� �α � r 

φ(r) ≤ c1 + δ φ(s) (14) 
s 

for 0 < r < s implies � �γr 
φ(r) ≤ c2 φ(s), (15) 

s 
where c2 is some constant that depends on c1, α and γ. 
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In other words for any 0 < γ < α we can prove ?? by proving ?? for a sufficiently small 
δ. We will prove this later. Pick 0 < β < 1 and apply this to ?? with φ(r) = Br (x0 ) |�u|
and γ = n− 2 + 2β to get 

n−2+2β 
2 r 2 

Br (x0) 
|�u| ≤ c

s Bs(x0) 
|�u| . (16) 

Let C = 
� �n−2+2β � 

Bs(x0) |�u|2, then s 

n−2+2β 
2 r 

Br (x0) 
|�u| ≤ c

s 
C, (17) 

so u ∈ Cβ by Morrey’s lemma. 

Now prove lemma’s 1.2 and 1.3. 

Lemma 1.2. We wish to show that � � �2 � 
2 n 2) (18) 

Bs(x0) 
|�(u− v | ≤ 

||A− 
λ

A(x0)|| 
Bs(x0) 

|�v|

and � � �2 � 
2 n 2 

Bs(x0) 
|�(u− v)| ≤ 

||A− A(x0)|| 
Bs(x0) 

|�u| . (19)
λ 

Proof We will prove the first equation. The proof of the second is analogous. Calculate 

λ ) 2 Aij 
∂(u− v) ∂(u− v) 

(20) 
Bs(x0) 

|�(u− v | ≤ 
Bs(x0) ∂xi ∂xj 

∂(u− v) ∂u ∂(v − u) ∂v 
Aij Aij≤ 

Bs(x0) ∂xi ∂xj 
− 

Bs (x0) ∂xi ∂xj 
. (21) 

Work on the first term. Clearly ∂Bs(x0 )
(u− v)A�u · dS = 0. By Stokes’ theorem we get 

∂ ∂u 
Aij 

∂(u− v) ∂u 
= (u− v) Aij = (u− v)Lu = 0. (22)

∂xi ∂xj 
− 

Bs(x0) ∂xi ∂xjBs(x0) Bs (x0) 

Plugging this into ?? gives 

λ ) 2 Aij 
∂(v − u) ∂v 

. (23) 
Bs(x0) 

|�(u− v | ≤ 
Bs(x0) ∂xi ∂xj 
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By a similar calculation to ?? we get Bs(x0) Aij (x0) 
∂(v−u) ∂v 

∂xi 
= 0, and
∂xj 

∂(v − u) ∂v2)
Bs(x0) 

|�(u− v | (Aij − Aij (x0)) (24)
λ ≤ 
∂xi ∂xjBs(x0) 

.

∂(v − u) ∂v


∂xi ∂xj
||A− A(x0)|| (25)≤ 

Bs(x0) i,j 

Now we need a minilemma, namely that if u, v are n vectors then ij uivj ≤ n|u||v|. Let 
w be the vector with wi = v1 + v2 + . . . + vn for all i. Note that 

n(v1 + . . . + v|w| = n)2 (26) 

(v1 + . . . + vn)2 
3/2 (27)

2
n≤ 

n
2 2+ . . . + v3/2 v1 n (28)n≤ 

n 
(29)≤ n|v| 

since the square of the mean is less than or equal to the mean of the square. From this we 
get i,j uivj = u · w ≤ u u as expected. Applying this to �(u − v) and �v| ||w| ≤ n| ||v|
gives 

2 (30)λ 
Bs(x0) 

|�(u− v)| ≤ n||A− A(x0)|| 
Bs (x0) 

|�(u− v)||�v| �� �1/2 �� �1/2 

2 2 n )
Bs(x0) 

|�v| (31).≤ ||A− A(x0)|| 
Bs (x0) 

|�(u− v |

Finally divide and square to get �2 � 
n||A− A(x0)||

λ 
2 2 (32))

Bs(x0) 
|�(u− v | ≤ 

Bs(x0) 
|�v|

as required.


Lemma 1.3. We will show that if φ is a positive and increasing function on R+ and
�� �αr 
φ(r) ≤ c1 

r
+ δ φ(s) (33) 

for r < r� and 0 < δ < 1 then �γr 
φ(r) ≤ c2(γ) φ(s) (34) 

s 

where γ = α 1 + log 2c1 , and c2 is a constant depending on γ.log δ 
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Proof Choose τ = δ1/α so that δ = τ α . Then 

φ(τ s) ≤ c(τ α + δ)φ(s) ≤ 2cτ αφ(s). (35) 

Therefore 

φ(τ k s) ≤ (2c1τ α)kφ(s). (36) 

1 + log 2c1Pick γ = α so that 2c1τ α−γ = 1 and we have log δ 

φ(τ k s) ≤ τ kγ φ(s). (37) 

When r = τ ks this is precisely what we wanted with c2 = 1. If instead τ k+1s ≤ r ≤ τ ks 
then �γ 

φ(r) ≤ φ(τ k s) ≤ τ kγ φ(s) ≤ 
1 � r 

φ(s) (38)
τ s 

which is what we needed. Finally note that by using a small δ we can get γ as close as we 
like to α (though the constant will become nastier). 
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