Lecture 20: Holder continuity of Harmonic functions.

1 Holder continuity of Harmonic functions

In this lecture we will show that harmonic functions need to have a degree of regularity, specifically they must be Holder continuous.

Theorem 1.1 Let L be a uniformly elliptic operator in divergence form taking

$$
\begin{equation*}
L u=\frac{\partial}{\partial x_{i}} A_{i j} \frac{\partial u}{\partial x_{j}} . \tag{1}
\end{equation*}
$$

If $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an L harmonic function then u is holder continuous.
The proof is a little involved, so we will first give a sketch of the proof, and then go back to fill in the details. The aim is to use Morrey's lemma.
Proof Pick $x_{0} \in \mathbb{R}^{n}$, and define the operator \widetilde{L} by

$$
\begin{equation*}
\widetilde{L} f=\frac{\partial}{\partial x_{i}} A_{i j}\left(x_{0}\right) \frac{\partial f}{\partial x_{j}}=A_{i j}\left(x_{0}\right) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} . \tag{2}
\end{equation*}
$$

Pick $s>0$, and let v be an L harmonic function with $v=u$ on $\partial B_{s}\left(x_{0}\right)$. Note that the inequalities we proved in lecture 16 apply to v so, in particular,

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)}|\nabla v|^{2} \leq k\left(\frac{r}{s}\right)^{n} \int_{B_{s}\left(x_{0}\right)}|\nabla v|^{2} \tag{3}
\end{equation*}
$$

for all $r<s$. We use this and the inequality $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$ to estimate

$$
\begin{align*}
\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{2} & \leq 2 \int_{B_{r}\left(x_{0}\right)}|\nabla v|^{2}+2 \int_{B_{r}\left(x_{0}\right)}|\nabla(u-v)|^{2} \tag{4}\\
& \leq 2 k\left(\frac{r}{s}\right)^{n} \int_{B_{s}\left(x_{0}\right)}|\nabla v|^{2}+2 \int_{B_{r}\left(x_{0}\right)}|\nabla(u-v)|^{2} \tag{5}\\
& \leq 2 k\left(\frac{r}{s}\right)^{n} \int_{B_{s}\left(x_{0}\right)}|\nabla v|^{2}+2 \int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)|^{2} . \tag{6}
\end{align*}
$$

Now use a lemma which we will prove later.

Lemma 1.2 Let $\left\|A-A\left(x_{0}\right)\right\|=\sup _{B_{s}\left(x_{0}\right), i, j}\left|A_{i j}-A_{i j}\left(x_{0}\right)\right|$. Then

$$
\begin{equation*}
\int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)|^{2} \leq\left(\frac{n\left\|A-A\left(x_{0}\right)\right\|}{\lambda}\right)^{2} \int_{B_{s}\left(x_{0}\right)}|\nabla v|^{2} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)|^{2} \leq\left(\frac{n\left\|A-A\left(x_{0}\right)\right\|}{\lambda}\right)^{2} \int_{B_{s}\left(x_{0}\right)}|\nabla u|^{2} \tag{8}
\end{equation*}
$$

By the first of these we get

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{2} \leq\left(2 k\left(\frac{r}{s}\right)^{n}+2\left(\frac{n \| A-A\left(x_{0}\right)| |}{\lambda}\right)^{2}\right) \int_{B_{s}\left(x_{0}\right)}|\nabla v|^{2} . \tag{9}
\end{equation*}
$$

Now we need to estimate this last integral in terms of u. We have

$$
\begin{align*}
\int_{B_{s}\left(x_{0}\right)}|\nabla v|^{2} & \leq 2 \int_{B_{s}\left(x_{0}\right)}|\nabla u|^{2}+2 \int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)|^{2} \tag{10}\\
& \leq\left(2+2\left(\frac{n \| A-A\left(x_{0}\right)| |}{\lambda}\right)^{2}\right) \int_{B_{s}\left(x_{0}\right)}|\nabla u|^{2} \tag{11}
\end{align*}
$$

by lemma 1.2. Plugging this back into ?? gives

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{2} \leq\left(2 k\left(\frac{r}{s}\right)^{n}+2\left(\frac{\left\|A-A\left(x_{0}\right)\right\|}{\lambda}\right)^{2}\right)\left(2+2\left(\frac{n\left\|A-A\left(x_{0}\right)\right\|}{\lambda}\right)^{2}\right) \int_{B_{s}\left(x_{0}\right)}|\nabla u|^{2} . \tag{12}
\end{equation*}
$$

By choosing s small we can get $n\left\|A-A\left(x_{0}\right)\right\|$ as small as we like. Therefore, for some constant k^{\prime} and for any $\delta>0$ we can pick a small s so that

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{2} \leq\left(k^{\prime}\left(\frac{r}{s}\right)^{n}+\delta\right) \int_{B_{s}\left(x_{0}\right)}|\nabla u|^{2} . \tag{13}
\end{equation*}
$$

We need one more lemma.
Lemma 1.3 Let ϕ be a positive and increasing function on the positive reals, and let α, c be positive constants. For $0<\gamma<\alpha$ there is $\delta>0$ such that

$$
\begin{equation*}
\phi(r) \leq c_{1}\left(\left(\frac{r}{s}\right)^{\alpha}+\delta\right) \phi(s) \tag{14}
\end{equation*}
$$

for $0<r<s$ implies

$$
\begin{equation*}
\phi(r) \leq c_{2}\left(\frac{r}{s}\right)^{\gamma} \phi(s), \tag{15}
\end{equation*}
$$

where c_{2} is some constant that depends on c_{1}, α and γ.

In other words for any $0<\gamma<\alpha$ we can prove ?? by proving ?? for a sufficiently small δ. We will prove this later. Pick $0<\beta<1$ and apply this to ?? with $\phi(r)=\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{2}$ and $\gamma=n-2+2 \beta$ to get

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{2} \leq c\left(\frac{r}{s}\right)^{n-2+2 \beta} \int_{B_{s}\left(x_{0}\right)}|\nabla u|^{2} . \tag{16}
\end{equation*}
$$

Let $C=\left(\frac{1}{s}\right)^{n-2+2 \beta} \int_{B_{s}\left(x_{0}\right)}|\nabla u|^{2}$, then

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)}|\nabla u|^{2} \leq c\left(\frac{r}{s}\right)^{n-2+2 \beta} C, \tag{17}
\end{equation*}
$$

so $u \in C^{\beta}$ by Morrey's lemma.
Now prove lemma's 1.2 and 1.3.
Lemma 1.2. We wish to show that

$$
\begin{equation*}
\int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)|^{2} \leq\left(\frac{n\left\|A-A\left(x_{0}\right)\right\|}{\lambda}\right)^{2} \int_{B_{s}\left(x_{0}\right)}|\nabla v|^{2} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)|^{2} \leq\left(\frac{n\left\|A-A\left(x_{0}\right)\right\|}{\lambda}\right)^{2} \int_{B_{s}\left(x_{0}\right)}|\nabla u|^{2} . \tag{19}
\end{equation*}
$$

Proof We will prove the first equation. The proof of the second is analogous. Calculate

$$
\begin{align*}
\lambda \int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)|^{2} & \leq \int_{B_{s}\left(x_{0}\right)} A_{i j} \frac{\partial(u-v)}{\partial x_{i}} \frac{\partial(u-v)}{\partial x_{j}} \\
& \leq \int_{B_{s}\left(x_{0}\right)} A_{i j} \frac{\partial(u-v)}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}-\int_{B_{s}\left(x_{0}\right)} A_{i j} \frac{\partial(v-u)}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} .
\end{align*}
$$

Work on the first term. Clearly $\int_{\partial B_{s}\left(x_{0}\right)}(u-v) A \nabla u \cdot d S=0$. By Stokes' theorem we get

$$
\begin{equation*}
\int_{B_{s}\left(x_{0}\right)} A_{i j} \frac{\partial(u-v)}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}=-\int_{B_{s}\left(x_{0}\right)}(u-v) \frac{\partial}{\partial x_{i}} A_{i j} \frac{\partial u}{\partial x_{j}}=\int_{B_{s}\left(x_{0}\right)}(u-v) L u=0 . \tag{22}
\end{equation*}
$$

Plugging this into ?? gives

$$
\begin{equation*}
\lambda \int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)|^{2} \leq \int_{B_{s}\left(x_{0}\right)} A_{i j} \frac{\partial(v-u)}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} . \tag{23}
\end{equation*}
$$

By a similar calculation to ?? we get $\int_{B_{s}\left(x_{0}\right)} A_{i j}\left(x_{0}\right) \frac{\partial(v-u)}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}=0$, and

$$
\begin{align*}
\lambda \int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)|^{2} & \leq \int_{B_{s}\left(x_{0}\right)}\left(A_{i j}-A_{i j}\left(x_{0}\right)\right) \frac{\partial(v-u)}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} \tag{24}\\
& \leq\left\|A-A\left(x_{0}\right)\right\| \int_{B_{s}\left(x_{0}\right)} \sum_{i, j}\left|\frac{\partial(v-u)}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}\right| \tag{25}
\end{align*}
$$

Now we need a minilemma, namely that if u, v are n vectors then $\sum_{i j} u_{i} v_{j} \leq n|u||v|$. Let w be the vector with $w_{i}=v_{1}+v_{2}+\ldots+v_{n}$ for all i. Note that

$$
\begin{align*}
|w| & =\sqrt{n\left(v_{1}+\ldots+v_{n}\right)^{2}} \tag{26}\\
& \leq n^{3 / 2} \sqrt{\frac{\left(v_{1}+\ldots+v_{n}\right)^{2}}{n^{2}}} \tag{27}\\
& \leq n^{3 / 2} \sqrt{\frac{v_{1}^{2}+\ldots+v_{n}^{2}}{n}} \tag{28}\\
& \leq n|v| \tag{29}
\end{align*}
$$

since the square of the mean is less than or equal to the mean of the square. From this we get $\sum_{i, j} u_{i} v_{j}=u \cdot w \leq|u||w| \leq n|u||v|$ as expected. Applying this to $\nabla(u-v)$ and ∇v gives

$$
\begin{align*}
\lambda \int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)|^{2} & \leq n| | A-A\left(x_{0}\right) \| \int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)||\nabla v| \tag{30}\\
& \leq n| | A-A\left(x_{0}\right) \|\left(\int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)|^{2}\right)^{1 / 2}\left(\int_{B_{s}\left(x_{0}\right)}|\nabla v|^{2}\right)^{1 / 2}(3 \tag{31}
\end{align*}
$$

Finally divide and square to get

$$
\begin{equation*}
\int_{B_{s}\left(x_{0}\right)}|\nabla(u-v)|^{2} \leq\left(\frac{n \| A-A\left(x_{0}\right)| |}{\lambda}\right)^{2} \int_{B_{s}\left(x_{0}\right)}|\nabla v|^{2} \tag{32}
\end{equation*}
$$

as required.
Lemma 1.3. We will show that if ϕ is a positive and increasing function on \mathbb{R}^{+}and

$$
\begin{equation*}
\phi(r) \leq c_{1}\left(\left(\frac{r}{r^{\prime}}\right)^{\alpha}+\delta\right) \phi(s) \tag{33}
\end{equation*}
$$

for $r<r^{\prime}$ and $0<\delta<1$ then

$$
\begin{equation*}
\phi(r) \leq c_{2}(\gamma)\left(\frac{r}{s}\right)^{\gamma} \phi(s) \tag{34}
\end{equation*}
$$

where $\gamma=\alpha\left(1+\frac{\log 2 c_{1}}{\log \delta}\right)$, and c_{2} is a constant depending on γ.

Proof Choose $\tau=\delta^{1 / \alpha}$ so that $\delta=\tau^{\alpha}$. Then

$$
\begin{equation*}
\phi(\tau s) \leq c\left(\tau^{\alpha}+\delta\right) \phi(s) \leq 2 c \tau^{\alpha} \phi(s) . \tag{35}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\phi\left(\tau^{k} s\right) \leq\left(2 c_{1} \tau^{\alpha}\right)^{k} \phi(s) \tag{36}
\end{equation*}
$$

Pick $\gamma=\alpha\left(1+\frac{\log 2 c_{1}}{\log \delta}\right)$ so that $2 c_{1} \tau^{\alpha-\gamma}=1$ and we have

$$
\begin{equation*}
\phi\left(\tau^{k} s\right) \leq \tau^{k \gamma} \phi(s) \tag{37}
\end{equation*}
$$

When $r=\tau^{k} s$ this is precisely what we wanted with $c_{2}=1$. If instead $\tau^{k+1} s \leq r \leq \tau^{k} s$ then

$$
\begin{equation*}
\phi(r) \leq \phi\left(\tau^{k} s\right) \leq \tau^{k \gamma} \phi(s) \leq \frac{1}{\tau}\left(\frac{r}{s}\right)^{\gamma} \phi(s) \tag{38}
\end{equation*}
$$

which is what we needed. Finally note that by using a small δ we can get γ as close as we like to α (though the constant will become nastier).

