MEASURE AND INTEGRATION: LECTURE 9

Invariance of Lebesgue measure. Given $A \subset \mathbb{R}^{n}$ and $z \in \mathbb{R}^{n}$, let $z+A=\{z+x \mid x \in A\}$ be the translate of A by z. Given $t>0$, let $t A=\{t x \mid x \in A\}$ be the dilation of A by t.

Let $I=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ and $z=z_{1} \times \cdots \times z_{n}$. Then

$$
z+I=\left[z_{1}+a_{1}, z_{1}+b_{1}\right] \times \cdots \times\left[z_{n}+a_{n}, z_{n}+b_{n}\right],
$$

and

$$
t I=\left[t a_{1}, t b_{1}\right] \times \cdots \times\left[t a_{n}, t b_{n}\right],
$$

and we have

$$
\begin{aligned}
\lambda(z+I) & =\left(z_{1}+b_{1}-z_{1}-a_{1}\right) \cdots\left(z_{n}+b_{n}-z_{n}-a_{z}\right) \\
& =\left(b_{1}-a_{1}\right) \cdots\left(b_{n}-a_{n}\right) \\
& =\lambda(I) .
\end{aligned}
$$

and

$$
\lambda(t I)=t^{n} \cdot \lambda(I) .
$$

If P is a special polygon, then $\lambda(z+P)=\lambda(P)$ and $\lambda(t P)=t^{n} P$. Indeed, write $P=\sum_{i=1}^{N} I_{i}$ and the proof is straightforward.

If G is an open set, then $\lambda(z+G)=\lambda(G)$ and $\lambda(t G)=t^{n} \lambda(G)$. We have $\lambda(G)=\sup \{\lambda(P) \mid P \subset G$ special polygon $\}$, so $\lambda(z+G)=$ $\sup \{\lambda(P) \mid P \subset z+G, P$ special polygon $\}$. But $P \subset G$ special polygon $\Longleftrightarrow z+P \subset z+G$ special polygon. Since Lebesgue invariance holds for special polygons, it holds for open sets.

Finally, by similar reasoning, it can be shown that a set $A \subset \mathbb{R}^{n}$ is measurable if and only if $z+A$ is measurable if and only if $t A$ is measurable, and $\lambda(A)=\lambda(z+A), \lambda(t A)=t^{n} \lambda(A)$.

A non-measurable set $E \subset \mathbb{R}^{n}$. Let \mathbb{Q} be the set of rational numbers. For $x \in \mathbb{R}$, consider $x+\mathbb{Q}=\{x+q \mid q \in \mathbb{Q}\}$. Then $y \in x+\mathbb{Q} \Longleftrightarrow$ $y-x \in \mathbb{Q}$.

Claim: if $x, x^{\prime} \in \mathbb{R}$, then either (i) $x+\mathbb{Q}=x^{\prime}+\mathbb{Q}$ or (ii) $(x+\mathbb{Q}) \cap$ $\left(x^{\prime}+\mathbb{Q}\right)=\emptyset$. Proof: If the intersection is nonempty, then there exists $y=x+q_{1}=x^{\prime}+q_{2}$, which implies that $x-x^{\prime}=q_{1}-q_{2} \in \mathbb{Q}$. Thus, $x+\mathbb{Q}=x^{\prime}+\mathbb{Q}$, and the claim is proved.

Date: October 2, 2003.

We have shown that \mathbb{R} is covered disjointly by the sets $x+\mathbb{Q}$.
The Axiom of Choice states that there exists a set $E \subset \mathbb{R}$ such that every point of \mathbb{R} belongs to only one of these sets, i.e.,

$$
\mathbb{R}=\bigcup_{x \in E}(x+\mathbb{Q})
$$

is a disjoint union. Alternatively, for any $x \in \mathbb{R}$, there exists a unique $y \in E$ and unique $z \in \mathbb{Q}$ such that $x=y+z$.

Since the set \mathbb{Q} is countable, its elements can be enumerated: $\mathbb{Q}=$ $\left\{q_{1}, q_{2}, \ldots\right\}$. Thus,

$$
\mathbb{R}=\bigcup_{k=1}^{\infty}\left(q_{k}+E\right)
$$

is a disjoint union. Using outer measure subadditivity and invariance of Lebesgue measure,

$$
\lambda^{*}(\mathbb{R}) \leq \sum_{k=1}^{\infty} \lambda^{*}\left(q_{k}+E\right)=\sum_{k=1}^{\infty} \lambda^{*}(E)
$$

Hence we must have that $\lambda^{*}(E)>0$ (otherwise $\lambda^{*}(\mathbb{R})=0$).
Now let $K \subset E$ be an arbitrary compact subset of E and let $D=$ $(0,1) \cap \mathbb{Q}$. (The set D is a bounded countably infinite set.) Then

$$
\bigcup_{q \in D}(q+K)=D+K
$$

is a bounded set. The sets in the union are disjoint, since rational translates of E are disjoint. We have

$$
\begin{aligned}
\infty & >\lambda(D+K) \quad \text { (bounded) } \\
& =\lambda\left(\bigcup_{q \in D}(q+K)\right) \\
& =\sum_{q \in D} \lambda(q+K) \\
& =\sum_{q \in D} \lambda(K) .
\end{aligned}
$$

Since the sum is over an infinite index set, $\lambda(K)=0$. Because $K \subset E$ arbitrary $\Rightarrow \lambda(K)=0$, we have $\lambda_{*}(E)=0$. But $\left.0=\lambda_{(} E\right)<\lambda^{*}(E) \Rightarrow$ $E \notin \mathcal{L}$.

Corollary 0.1. If $A \subset \mathbb{R}^{n}$ is measurable with positive measure, then there exists $B \subset A$ that is not measurable.

Proof. Write $A=\cup_{k=1}^{\infty}\left(\left(q_{k}+E\right) \cap A\right)$ as a disjoint union. Then

$$
0<\lambda(A)=\lambda^{*}(A) \leq \sum_{k=1}^{\infty} \lambda^{*}\left(\left(q_{k}+E\right) \cap A\right)
$$

and so $\lambda^{*}\left(\left(q_{k}+E\right) \cap A\right)>0$ for some k. But $\lambda_{*}\left(\left(q_{k}+E\right) \cap A\right) \leq$ $\lambda_{*}\left(q_{k}+E\right)=\lambda_{*}(E)=0$, a contradiction.

Invariance under linear transformations.

Theorem 0.2. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map and $A \subset \mathbb{R}^{n}$. Then

$$
\begin{aligned}
& \lambda^{*}(T A)=|\operatorname{det} T| \lambda^{*}(A), \\
& \lambda_{*}(T A)=|\operatorname{det} T| \lambda_{*}(A) .
\end{aligned}
$$

If A is measurable, then $T A$ is measurable and

$$
\lambda(T A)=|\operatorname{det} T| \lambda(A)
$$

Proof. First assume that T is invertible, i.e., that $\operatorname{det} T \neq 0$. We will use the following lemma.

Lemma 0.3. Let T be invertible and let $J=[0,1)^{n}$. Let ρ be defined by $\lambda(T J)=\rho \lambda(J)$. If $A \subset \mathbb{R}^{n}$, then $\lambda^{*}(T A)=\rho \lambda^{*}(A)$ and $\lambda_{*}(T A)=$ $\rho \lambda_{*}(A)$. If A is measurable, then $T A$ is measurable and $\lambda(T A)=$ $\rho \lambda(A)$.

Proof. The set J is the union of countably many compact sets:

$$
J=\bigcup_{k=1}^{\infty}[0,1-1 / k]^{n}
$$

and so

$$
T J=\bigcup_{k=1}^{\infty} T([0,1-1 / k])
$$

Since T maps compact sets to compact sets, $T J$ is the union of countably many compact sets. Thus, $T J$ is measurable, so the definition of ρ makes sense.

We just to need to prove that $\lambda(T G)=\rho \lambda(G)$ for G open. As before, if the measure of open sets is invariant, then outer measure, compacts, and inner measures are invariant.

Let $G \subset \mathbb{R}^{n}$ be open. Claim: can write $G=\cup_{k=1}^{\infty} J_{k}$ with J_{k} 's disjoint and each J_{k} is a translation and dilation of J. (Pair by integer of those not contained, then pair by $1 / 2$, then by $1 / 4, \ldots$) Let $J_{k}=z_{k}+t_{k} \cdot J$. Then $\lambda\left(J_{k}\right)=t_{k}^{n} \lambda(J)$.

$$
T J_{k}=T z_{k}+t_{k} \cdot T J
$$

$$
\begin{aligned}
\Rightarrow \lambda\left(T J_{k}\right) & =t_{k}^{n} \lambda(T J) \\
& =t_{k}^{n} \rho \lambda(J) \\
& =t_{k}^{n} \rho t_{k}^{1-n} \lambda\left(J_{k}\right) .
\end{aligned}
$$

Thus, $\lambda\left(T J_{k}\right)=\rho \lambda\left(J_{k}\right)$. Since $G=\cup_{k=1}^{\infty} J_{k}, T G=\cup_{k=1}^{\infty} T J_{k}$, which is a disjoint collection of measurable sets. Thus we have

$$
\lambda(T G)=\sum_{k=1}^{\infty} \lambda\left(T J_{k}\right)=\sum_{k=1}^{\infty} \rho \cdot \lambda\left(J_{k}\right)=\rho \cdot \lambda(G)
$$

To identify ρ, check for elementary matrices just on the cube. This shows that in fact $\rho=|\operatorname{det} T|$.

Lastly, if T is not invertible, i.e., $\operatorname{det} T=0$, then the image $T \mathbb{R}^{n}$ is the subset of a hyperplane. This means that $T A$ has measure zero, so the formula still holds.

A linear transformation is a rotation when the matrix is an orthogonal matrix: $A A^{T}=I$. In this case, it must be that $\operatorname{det} A= \pm 1$. Thus, Lebesgue measure is invariant under rotation.

Finally, there is an important subgroup of the group of all $n \times n$ real matrices known as the special linear group, denoted

$$
S L(n, \mathbb{R})=\{A \mid \operatorname{det} A=1\}
$$

