MEASURE AND INTEGRATION: LECTURE 8

More properties of \mathcal{L}.

(1) All open sets and closed sets are in \mathcal{L}. (In particular, \mathcal{L} contains the Borel σ-algebra \mathcal{B}.)
(2) If $\lambda^{*}(A)=0$, then A is measurable and $\lambda(A)=0$. (All sets of measure zero are measurable.)
(3) Approximation property: $A \subset \mathbb{R}^{n}$ is measurable \Longleftrightarrow for all $\epsilon>0$ there exists $F \subset A \subset G$ with F closed, G open, and $\lambda(G \backslash F)<\epsilon$.

Proof. (1) G open $\Rightarrow G \cap B(0, k)$ is measurable and open with $\lambda^{*}<\infty$. But $G=\cup_{k=1}^{\infty} G \cap B(0, k) \in \mathcal{L}$ since \mathcal{L} is a σ-algebra. Moreover, again using that \mathcal{L} is a σ-algebra, all closed sets are in \mathcal{L}.
(2) We have $0 \leq \lambda_{*}(A) \leq \lambda^{*}(A)=0 \Longleftrightarrow \lambda_{*}(A)=\lambda^{*}(A)$, so $A \in \mathcal{L}_{0}$ and $\lambda(A)=0$.
(3) First, assume the approximation property. Thus, for each $k=$ $1,2, \ldots$, there exists $F_{k} \subset A \subset G_{k}, F_{k}$ closed, G_{k} open, such that $\lambda\left(G_{k} \backslash F_{k}\right)<1 / k$. Let $B=\cup_{k=1}^{\infty} F_{k}$. By (1) and the fact that \mathcal{L} is a σ-algebra, $B \in \mathcal{L}$. Also, $B \subset A$ and $A \backslash B \subset$ $G_{k} \backslash B \subset G_{k} \backslash F_{k}$. Thus,

$$
\lambda^{*}(A \backslash B) \leq \lambda\left(G_{k} \backslash F_{k}\right)<1 / k .
$$

Since this holds for any $k, \lambda^{*}(A \backslash B)=0$. Thus, $A \backslash B \in \mathcal{L}$ and $\lambda(A \backslash B)=0$. But $A=(A \backslash B) \cup B$, so $A \in \mathcal{L}$.

For the converse, assume $A \in \mathcal{L}$ and let $\epsilon>0$ be given. Let $E_{k}=B(0, k) \backslash B(0, k-1)=\left\{x \in \mathbb{R}^{n} \mid k-1 \leq\|x\|<k\right\}$. Then $E_{k} \in \mathcal{L}_{0}$, so $A \cap E_{k} \in \mathcal{L}_{0}$. By the approximation property for \mathcal{L}_{0}, there exist $K_{k} \subset A \cap E_{k} \subset G_{k}$ such that $\lambda\left(G_{k} \backslash K_{k}\right)<\epsilon / 2^{k}$. Let $F=\cup_{k=1}^{\infty} K_{k}$ and $G=\cup_{k=1}^{\infty} G_{k}$. Since arbitrary unions of open sets are open, G is open. Though this is not true for arbitrary unions of closed sets, F is nevertheless closed. (Proof: Let x be a limit point of F. Then x has to be a limit point of some K_{k},

Date: September 30, 2003.
and since each K_{k} is closed, $x \in K_{k}$.) Now $F \subset A \subset G$ and

$$
G \backslash F=\left(\bigcup_{k=1}^{\infty} G_{k}\right) \backslash F=\bigcup_{k=1}^{\infty}\left(G_{k} \backslash F\right) \subset \bigcup_{k=1}^{\infty}\left(G_{k} \backslash F_{k}\right)
$$

Hence,

$$
\lambda(G \backslash F) \leq \sum_{k=1}^{\infty} \lambda\left(G_{k} \backslash K_{k}\right)<\epsilon \sum_{k=1}^{\infty} 2^{-k}=\epsilon
$$

(4) If $A \in \mathcal{L}$ and $\lambda^{*}(A)<\infty$, we have that $\lambda_{*}(A)=\lambda^{*}(A)=\lambda(A)$. We claim this is true even if $\lambda^{*}(A)=\infty$. If $\lambda(A)<\infty$, then by the approximation property there exist $F \subset A \subset G$ such that $\lambda(G \backslash F)<1$. Then
$\lambda(G)=\lambda(G \backslash A)+\lambda(A) \leq \lambda(G \backslash F)+\lambda(A)<1+\lambda(A)<\infty$.
This is a contradiction; it must be that $\lambda(A)=\infty$.
Now consider

$$
A \cap B(0,1) \subset A \cap B(0,2) \subset A \cap B(0,3) \subset \cdots
$$

Then

$$
\lambda(A)=\lim _{k \rightarrow \infty} \lambda(A \cap B(0, k))=\infty
$$

Since $A \cap B(0, k) \in \mathcal{L}_{0}$ for each k,

$$
\lambda(A \cap B(0, k))=\lambda_{*}(A \cap B(0, k)) \leq \lambda_{*}(A)
$$

and so $\lambda_{*}(A)=\infty$.
(6) If $A \subset B$ and B is measurable, then $\lambda^{*}(A)+\lambda_{*}(B \backslash A)=\lambda(B)$. Let G be an open set such that $G \supset A$. Then

$$
\begin{aligned}
\lambda(G)+\lambda_{*}(B \backslash A) & \geq \lambda(B \cap G)+\lambda_{*}(B \backslash A) \\
& \geq \lambda(B \cap G)+\lambda_{*}(B \backslash G) \\
& =\lambda(B \cap G)+\lambda(B \backslash G)=\lambda(B) .
\end{aligned}
$$

Since G is arbitrary, $\lambda^{*}(A)+\lambda_{*}(B \backslash A) \geq \lambda(B)$. Next take $K \subset B \backslash A$ compact. Then

$$
\begin{aligned}
\lambda^{*}(A)+\lambda(K) & \leq \lambda^{*}(B \backslash K)+\lambda(K) \\
& =\lambda(B \backslash K)+\lambda(K)=\lambda(B)
\end{aligned}
$$

Since K is arbitrary, $\lambda^{*}(A)+\lambda_{*}(B \backslash A) \leq \lambda(B)$.
(7) (Carathéodory condition) A set A is measurable if and only if for every set $E \subset \mathbb{R}^{n}$,

$$
\lambda^{*}(E)=\lambda^{*}(E \cap A)+\lambda^{*}\left(E \cap A^{c}\right) .
$$

If $A \in \mathcal{L}$, then let $G \supset E$ be open. Then

$$
\lambda(G)=\lambda(G \cap A)+\lambda\left(G \cap A^{c}\right) \geq \lambda^{*}(E \cap A)+\lambda^{*}\left(E \cap A^{c}\right) .
$$

Since G is arbitrary,

$$
\lambda^{*}(E) \geq \lambda^{*}(E \cap A)+\lambda^{*}\left(E \cap A^{c}\right)
$$

but

$$
\lambda^{*}(E) \leq \lambda^{*}(E \cap A)+\lambda^{*}\left(E \cap A^{c}\right)
$$

by subadditivity.
Conversely, let $E, M \in \mathcal{L}_{0}$. We have assumed that $\lambda^{*}(M)=$ $\lambda^{*}(M \cap A) \lambda^{*}\left(M \cap A^{c}\right)$. From (6), since $M \cap A^{c} \subset M$,

$$
\begin{aligned}
\lambda(M) & =\lambda^{*}\left(M \cap A^{c}\right)+\lambda_{*}\left(M \backslash\left(M \cap A^{c}\right)\right) \\
& =\lambda^{*}\left(M \cap A^{c}\right)+\lambda_{*}(M \cap A) .
\end{aligned}
$$

Thus, $\lambda^{*}(M \cap A)=\lambda_{*}(M \cap A)$, and so $A \cap M \in \mathcal{L}_{0}$. Since M is arbitrary, $A \in \mathcal{L}$.

Discussion. The Carathéodory condition is quite significant. It shows that the knowledge of the properties of outer measure alone is sufficient to decide which sets are measurable. Although this means that the Lebesgue measure could have been developed entirely in terms of $\lambda(I)$ for special rectangles, our method of development is preferable for the beginner.

