
MEASURE AND INTEGRATION: LECTURE 8


More properties of L. 

(1) All open sets and closed sets are in L. (In particular, L contains 
the Borel σalgebra B.) 

(2) If λ∗(A) = 0, then A is measurable and λ(A) = 0. (All sets of 
measure zero are measurable.) 

(3) Approximation property: A ⊂ Rn is measurable for all ⇐⇒
� > 0 there exists F ⊂ A ⊂ G with F closed, G open, and 
λ(G \ F ) < �. 

Proof. (1) G open ⇒ G ∩ B(0, k) is measurable and open with 
λ∗ < ∞. But G = ∪∞ G ∩ B(0, k) ∈ L since L is a σalgebra. k=1

Moreover, again using that L is a σalgebra, all closed sets are 
in L. 

(2) We have 0 ≤ λ∗(A) ≤ λ∗(A) = 0 λ∗(A) = λ∗(A), so⇐⇒ 
0 and λ(A) = 0. A ∈ L

(3) First, assume the approximation property.	 Thus, for each k = 
1, 2, . . ., there exists Fk ⊂ A ⊂ Gk , Fk closed, Gk open, such 
that λ(Gk \ Fk ) < 1/k. Let B = Fk . By (1) and the fact k=1∪∞
that L is a σalgebra, B ∈ L. Also, B ⊂ A and A \ B ⊂
Gk \B ⊂ Gk \ Fk . Thus, 

λ∗(A \B) ≤ λ(Gk \ Fk ) < 1/k. 

Since this holds for any k, λ∗(A \B) = 0. Thus, A \B ∈ L and 
λ(A \B) = 0. But A = (A \B) ∪B, so A ∈ L. 

For the converse, assume A ∈ L and let � > 0 be given. Let 
Ek = B(0, k) \B(0, k− 1) = {x ∈ Rn x� < k}. Then| k− 1 ≤ �

0, so A∩Ek ∈ L0. By the approximation property for L0,Ek ∈ L
there exist Kk ⊂ A∩Ek ⊂ Gk such that λ(Gk \Kk ) < �/2k . Let 
F = ∪∞ Kk and G = Gk . Since arbitrary unions of open k=1 ∪∞k=1

sets are open, G is open. Though this is not true for arbitrary 
unions of closed sets, F is nevertheless closed. (Proof: Let x be 
a limit point of F . Then x has to be a limit point of some Kk , 
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and since each Kk is closed, x ∈ Kk .) Now F ⊂ A ⊂ G and 
 
 
∞ ∞ ∞

G \ F = Gk \ F = (Gk \ F ) ⊂ (Gk \ Fk ). 
k=1 k=1 k=1 

Hence, 
∞ ∞

λ(G \ F ) ≤ λ(Gk \Kk ) < � 2−k = �. 
k=1 k=1 

(4) If A ∈ L and λ∗(A) < ∞, we have that λ∗(A) = λ∗(A) = λ(A). 
We claim this is true even if λ∗(A) = ∞. If λ(A) < ∞, then by 
the approximation property there exist F ⊂ A ⊂ G such that 
λ(G \ F ) < 1. Then 

λ(G) = λ(G \ A) + λ(A) ≤ λ(G \ F ) + λ(A) < 1 + λ(A) < ∞. 

This is a contradiction; it must be that λ(A) = ∞. 
Now consider 

A ∩B(0, 1) ⊂ A ∩B(0, 2) ⊂ A ∩B(0, 3) ⊂ · · · . 

Then 

λ(A) = lim λ(A ∩B(0, k)) = ∞. 
k→∞ 

Since A ∩B(0, k) ∈ L0 for each k, 

λ(A ∩B(0, k)) = λ∗(A ∩B(0, k)) ≤ λ∗(A), 

and so λ∗(A) = ∞. 
(6) If A ⊂ B and B is measurable, then λ∗(A) + λ∗(B \A) = λ(B). 

Let G be an open set such that G ⊃ A. Then 

λ(G) + λ∗(B \ A) ≥ λ(B ∩G) + λ∗(B \ A) 

≥ λ(B ∩G) + λ∗(B \G) 

= λ(B ∩G) + λ(B \G) = λ(B). 

Since G is arbitrary, λ∗(A) + λ∗(B \ A) ≥ λ(B). Next take 
K ⊂ B \ A compact. Then 

λ∗(A) + λ(K) ≤ λ∗(B \K) + λ(K) 

= λ(B \K) + λ(K) = λ(B). 

Since K is arbitrary, λ∗(A) + λ∗(B \ A) ≤ λ(B). 
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(7) (Carathéodory condition) A set A is measurable if and only if 
for every set E ⊂ Rn , 

λ∗(E) = λ∗(E ∩ A) + λ∗(E ∩ Ac). 

If A ∈ L, then let G ⊃ E be open. Then 

λ(G) = λ(G ∩ A) + λ(G ∩ Ac) ≥ λ∗(E ∩ A) + λ∗(E ∩ Ac). 

Since G is arbitrary, 

λ∗(E) ≥ λ∗(E ∩ A) + λ∗(E ∩ Ac), 

but 
λ∗(E) ≤ λ∗(E ∩ A) + λ∗(E ∩ Ac) 

by subadditivity. 
Conversely, let E, M ∈ L0. We have assumed that λ∗(M) = 

λ∗(M ∩ A)λ∗(M ∩ Ac). From (6), since M ∩ Ac ⊂ M , 

λ(M) = λ∗(M ∩ Ac) + λ∗(M \ (M ∩ Ac)) 

= λ∗(M ∩ Ac) + λ∗(M ∩ A). 

Thus, λ∗(M ∩ A) = λ∗(M ∩ A), and so A ∩M ∈ L0. Since M 
is arbitrary, A ∈ L. 

Discussion. The Carathéodory condition is quite significant. It shows 
that the knowledge of the properties of outer measure alone is sufficient 
to decide which sets are measurable. Although this means that the 
Lebesgue measure could have been developed entirely in terms of λ(I) 
for special rectangles, our method of development is preferable for the 
beginner. 


