MEASURE AND INTEGRATION: LECTURE 6

Lebesgue measure on \mathbb{R}^n . We will define the Lebesgue measure $\lambda \colon \{\text{subsets of } \mathbb{R}^n\} \to [0, \infty] \text{ through a series of steps.}$

- (1) $\lambda(\emptyset) = 0$.
- (2) Special rectangles: rectangles with sides parallel to axes.
 - n = 1: $\lambda([a, b]) = b a$
 - n = 2: $\lambda([a_1, b_1] \times [a_2, b_2]) = (b_1 a_1)(b_2 a_2)$.

(3) Special polygons: finite unions of special rectangles. To find measure, write $P = \bigcup_{k=1}^{N} I_k$, I_k disjoint special rectangles. Define $\lambda(P) = \sum_{k=1}^{N} \lambda(I_k)$.

Properties of Lebesgue measure.

- (1) Well-defined. If $P = \bigcup_{k=1}^N I_k = \bigcup_{k=1}^{N'} I'_k$, then $\sum_{k=1}^N \lambda(I_k) = \bigcup_{k=1}^N I_k$ $\sum_{k=1}^{N'} \lambda(I_k'). \text{ (Exercise)}$ (2) $P_1 \subset P_2 \Rightarrow \lambda(P_1) \leq \lambda(P_2).$ (3) $P_1, P_2 \text{ disjoint } \Rightarrow \lambda(P_1 \cup P_2) = \lambda(P_1) + \lambda(P_2).$

Open sets. Let $G \subset \mathbb{R}^n$ be open and nonempty. We will approximate G from within by special polygons. That is, we define

$$\lambda(G) = \sup\{\lambda(P) \mid P \subset G, P \text{ special polygon}\}.$$

Properties for open sets.

- (1) $\lambda(G) = 0 \iff G = \emptyset$. (Nontrivial open sets have positive measure.)
- (2) $\lambda(\mathbb{R}^n) = \infty$.

- (3) $G_1 \subset G_2 \Rightarrow \lambda(G_1) \leq \lambda(G_2)$. (4) $\lambda(\bigcup_{k=1}^{\infty} G_k) \leq \sum_{k=1}^{\infty} \lambda(G_k)$. (5) G_k open and pairwise disjoint $\Rightarrow \lambda(\bigcup_{k=1}^{\infty} G_k) = \sum_{k=1}^{\infty} \lambda(G_k)$. (6) P special polygon $\Rightarrow \lambda(P) = \lambda(P^{\circ})$, where P° = interior of P.

Proof. (3) If $P \subset G_1$, then $P \subset G_2$. Thus $\lambda(P) \leq \lambda(G_2)$. Taking sup over all special polygons P gives the desired result.

Date: September 23, 2003.

(5) Let $P \subset \bigcup_{k=1}^{\infty} G_k$. Claim: can write $P = \bigcup_{k=1}^{N} P_{k'}$ with P_k special polygons, $P_k \subset G_{k'}$ and P_k not contained in any other G_k . Then

$$\lambda(P) = \sum_{k=1}^{N} \lambda(P_k') \le \sum_{k'=1}^{N} \lambda(G_{k'}) \le \sum_{k=1}^{\infty} \lambda(G_k).$$

Taking sup over all P, $\lambda (\bigcup_{k=1}^{\infty} G_k) \leq \sum_{k=1}^{\infty} \lambda(G_k)$. (6) Fix N and choose P_1, \ldots, P_N special polygons such that $P_k \subset G_k$. Then P_k 's disjoint $\Rightarrow \bigcup_{k=1}^N P_k \subset \bigcup_{k=1}^N G_k \subset \bigcup_{k=1}^{\infty} G_k$. Thus,

$$\sum_{k=1}^{N} \lambda(P_k) = \lambda\left(\bigcup_{k=1}^{N} P_k\right) \le \lambda\left(\bigcup_{k=1}^{\infty} G_k\right).$$

Taking sup over all $P_1, \ldots, P_N, \sum_{k=1}^N \lambda(G_k) \leq \lambda(\bigcup_{k=1}^\infty G_k)$. Letting $N \to \infty$,

$$\sum_{k=1}^{\infty} \lambda(G_k) \le \lambda \left(\bigcup_{k=1}^{\infty} G_k \right).$$

The reverse inequality is simply (5), and so equality must hold.

(7) Clearly, for any $\epsilon > 0$ we can find $P' \subset P^{\circ}$ such that $\lambda(P') >$ $\lambda(P) - \epsilon$. Thus,

$$\lambda(P) - \epsilon < \lambda(P') \le \lambda(P^{\circ}),$$

and so $\lambda(P) \leq \lambda(P^{\circ})$. Of course, the inequality $\lambda(P^{\circ}) \leq \lambda(P)$ also holds, because, if $Q \subset P^{\circ}$ is a special polygon, then $\lambda(Q) \leq$ $\lambda(P)$ and we simply take sup over all such Q.

Compact sets. Let $K \subset \mathbb{R}^n$. We will approximate K by open sets. That is, we define

$$\lambda(K) = \inf\{\lambda(G) \mid K \subset G, G \text{ open}\}.$$

Claim: the definition is well-defined. (In particular, a special polygon P is compact.)

Proof. Let $\alpha = \text{old } \lambda(P)$ and $\beta = \text{new } \lambda(P)$. If $P \subset G$, then $\lambda(P) < \emptyset$ $\lambda(G)$, so by taking inf over all $G, \alpha \leq \beta$. For the other inequality, say $P = \bigcup_{k=1}^{N} I_k$. Choose I'_k larger than I_k so that $(I'_k)^{\circ} \supset I_k$ and $\lambda(I'_k) < \lambda(I_k) + \epsilon/N$ for some fixed $\epsilon > 0$. Let $G = \bigcup_{k=1}^{N} (I'_k)^{\circ}$. Then $P \subset G$ and G is open. We have

$$\beta \le \lambda(G) \le \sum_{k=1}^{N} \lambda \left((I'_k)^{\circ} \right)$$

$$= \sum_{k=1}^{N} \lambda (I'_k)$$

$$< \sum_{k=1}^{N} \lambda (I_k) + \epsilon / N$$

$$= \alpha + \epsilon$$

Since this is true for any $\epsilon > 0$, $\beta \leq \alpha$, and consequently $\alpha = \beta$.

Properties for compact sets.

- (1) $0 \le \lambda(K) < \infty$.
- (2) $K_1 \subset K_2 \Rightarrow \lambda(K_1) \leq \lambda(K_2)$.
- (3) $\lambda(K_1 \cup K_2) \le \lambda(K_1) + \lambda(K_2)$.
- (4) If K_1 and K_2 are disjoint, then $\lambda(K_1 \cup K_2) = \lambda(K_1) + \lambda(K_2)$.

Proof. (2) If $K_2 \subset G$ (G open) then $K_1 \subset G$.

- (3) If $K_1 \subset G_1$ and $K_2 \subset G_2$, then $K_1 \cup K_2 \subset G_1 \cup G_2$. Thus, $\lambda(K_1 \cup K_2) \leq \lambda(G_1 \cup G_2) \leq \lambda(G_1) + \lambda(G_2)$. Take inf over all $G_1, G_2 \Rightarrow \lambda(K_1 \cup K_2) \leq \lambda(K_1) + \lambda(K_2)$.
- (4) Since K_1 and K_2 are compact (and disjoint), there exists $\epsilon > 0$ such that an ϵ -neighborhood K_1^{ϵ} of K_1 does not intersect K_2 and an ϵ -neighborhood K_2^{ϵ} of K_2 does not intersect K_1 . Let G be an open set such that $K_1 \cup K_2 \subset G$. Let $G_1 = G \cap K_1^{\epsilon}$ and $G_2 = G \cap K_2^{\epsilon}$. Then G_1 and G_2 are disjoint, $K_i \subset G_i$ for i = 1, 2, and

$$\lambda(K_1) + \lambda(K_2) \le \lambda(G_1) + \lambda(G_2) = \lambda(G_1 \cup G_2) \le \lambda(G).$$

Taking inf over all G gives $\lambda(K_1) + \lambda(K_2) \leq \lambda(K_1 \cup K_2)$. The reverse inequality is $(3) \Rightarrow \lambda(K_1 \cup K_2) = \lambda(K_1) + \lambda(K_2)$.

Inner and outer measure. If $A \subset \mathbb{R}^n$ is arbitrary, then we define both inner and outer measure:

- (Outer measure) $\lambda^*(A) = \inf\{\lambda(G) \mid A \subset G, G \text{ open}\}.$
- (Inner measure) $\lambda_*(A) = \sup\{\lambda(K) \mid K \subset A, K \text{ compact}\}.$

Properties:

- (1) $\lambda_*(A) \leq \lambda^*(A)$.
- (2) $A \subset B \Rightarrow \lambda^*(A) < \lambda^*(B)$ and $\lambda_*(A) < \lambda_*(B)$.

- (3) $\lambda^*(\bigcup_{k=1}^{\infty} A_k \leq \sum_{k=1}^{\infty} \lambda^*(A_k)$. (Outer measure is countably subadditive.)
- (4) If A_k disjoint, then $\lambda_* (\bigcup_{k=1}^{\infty} A_k) \geq \sum_{k=1}^{\infty} \lambda_* (A_k)$. (5) If A open or compact, then $\lambda^* (A) = \lambda_* (A) = \lambda (A)$.
- (1) If $K \subset A \subset G$, then $K \subset G$, so $\lambda(K) \leq \lambda(G)$ by Proof. definition of λ (compact).
 - (3) For any $\epsilon > 0$, choose $G_k \supset A_k$ such that $\lambda(G_k) < \lambda^*(A_k) + \epsilon/2^k$.

$$\lambda^* \left(\bigcup_{k=1}^{\infty} A_k \right) \le \lambda \left(\bigcup_{k=1}^{\infty} G_k \right) \le \sum_{k=1}^{\infty} \lambda(G_k)$$

$$< \sum_{k=1}^{\infty} \left(\lambda^*(A_k) + \epsilon/2^k \right)$$

$$= \sum_{k=1}^{\infty} \lambda^*(A_k) + \epsilon.$$

(4) Choose $K_k \subset A_k$; then K_k 's disjoint. Then

$$\lambda_* \left(\bigcup_{k=1}^{\infty} A_k \right) \ge \lambda \left(\bigcup_{k=1}^{N} K_k \right) = \sum_{k=1}^{N} \lambda(K_k).$$

With N fixed, take sup over all K_k . This gives

$$\lambda_* \left(\bigcup_{k=1}^{\infty} A_k \right) \ge \sum_{k=1}^{\infty} \lambda_* (A_k).$$

Letting $N \to \infty$ gives the result.

(5) First let A be open. Then $\lambda^*(A) = \lambda(A)$. If $P \subset A$ with P special polygon, then $\lambda(P) \leq \lambda_*(A)$, which implies that $\lambda(A) \leq$ $\lambda_*(A)$. Thus,

$$\lambda^*(A) = \lambda(A) \le \lambda_*(A) \le \lambda^*(A),$$

so all are equal. Now let A be compact. Then $\lambda_*(A) = \lambda(A)$, and $\lambda(A) = \lambda^*(A)$ since the measure of compact sets was defined using open sets.