MEASURE AND INTEGRATION: LECTURE 3

Riemann integral. If s is simple and measurable then

$$
\int_{X} s d \mu=\sum_{i=1}^{N} \alpha_{i} \mu\left(E_{i}\right)
$$

where $s=\sum_{i=1}^{N} \alpha_{i} \chi_{E_{i}}$. If $f \geq 0$, then

$$
\int_{X} f d \mu=\sup \left\{\int_{X} s d \mu \mid 0 \leq s \leq f, s \text { simple \& measurable }\right\} .
$$

Recall the Riemann integral of function f on interval $[a, b]$. Define lower and upper integrals $L(f, P)$ and $U(f, P)$, where P is a partition of $[a, b]$. Set

$$
\int_{-} f=\sup _{P} L(f, P) \quad \text { and } \quad \bar{\int} f=\inf _{P} U(f, P) .
$$

A function f is Riemann integrable \Longleftrightarrow

$$
\int_{-} f=\bar{\int} f
$$

in which case this common value is $\int f$.
A set $B \subset \mathbb{R}$ has measure zero if, for any $\epsilon>0$, there exists a countable collection of intervals $\left\{I_{i}\right\}_{i=1}^{\infty}$ such that $B \subset \cup_{i=1}^{\infty} I_{i}$ and $\sum_{i=1}^{\infty} \lambda\left(I_{i}\right)<\epsilon$. Examples: finite sets, countable sets. There are also uncountable sets with measure zero. However, any interval does not have measure zero.

Theorem 0.1. A function f is Riemann integrable if and only if f is discontinuous on a set of measure zero.

A function is said to have a property (e.g., continuous) almost everywhere (abbreviated a.e.) if the set on which the property does not hold has measure zero. Thus, the statement of the theorem is that f is Riemann integrable if and only if it is continuous almost everywhere.

[^0]Recall positive measure: a measure function $\mu: \mathcal{M} \rightarrow[0, \infty]$ such that $\mu\left(\cup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)$ for $E_{i} \in \mathcal{M}$ disjoint.

Examples.

(1) "Counting measure." Let X be any set and $\mathcal{M}=\mathcal{P}(X)$ the set of all subsets. If $E \subset X$ is finite, then $\mu(E)=\# E$ (the number of elements in E). If $E \subset X$ is infinite, then $\mu(E)=\infty$.
(2) "Unit mass at x_{0} - Dirac delta function." Again let X be any set and $\mathcal{M}=\mathcal{P}(X)$. Choose $x_{0} \in X$. Set

$$
\mu(E)= \begin{cases}1 & \text { if } x_{0} \in E \\ 0 & \text { if } x_{0} \notin E\end{cases}
$$

Theorem 0.2. (1) If $E \subset \mathbb{R}$ and $\mu(E)<\infty$, then $\mu(\emptyset)=0$.
(2) (Monotonicity) $A \subset B \Rightarrow \mu(A) \leq \mu(B)$.
(3) If $A_{i} \in \mathcal{M}$ for $i=1,2, \ldots, A_{1} \subset A_{2} \subset \cdots$, and $A=\cup_{i=1}^{\infty} A_{i}$, then $\mu\left(A_{i}\right) \rightarrow \mu(A)$ as $i \rightarrow \infty$.
(4) If $A_{i} \in \mathcal{M}$ for $i=1,2, \ldots, A_{1} \supset A_{2} \supset \cdots, \mu\left(A_{1}\right)<\infty$, and $A=\cap_{i=1}^{\infty} A_{i}$, then $\mu\left(A_{i}\right) \rightarrow \mu(A)$ as $i \rightarrow \infty$.

Proof. (1) $E=E \cup \emptyset \Rightarrow \mu(E)=\mu(E)+\mu(\emptyset)$.
(2) $B=A \cup(B \backslash A) \Rightarrow \mu(B)=\mu(A)+\mu(B \backslash A) \geq \mu(A)$.
(3) Let $B_{1}=A_{1}, B_{2}=A_{2} \backslash A_{1}, B_{3}=A_{3} \backslash A_{2}, \ldots$ Then the B_{i} are disjoint, $A_{n}=B_{1} \cup \cdots \cup B_{n}$, and $A=\cup_{i=1}^{\infty} B_{i}$. Thus, $\mu\left(A_{n}\right)=\mu\left(B_{1}\right)+\cdots+\mu\left(B_{n}\right)=\sum_{i=1}^{n} \mu\left(B_{i}\right)$, and (3) follows.
(4) Let $C_{n}=A_{1} \backslash A_{n}$. Then $C_{1} \subset C_{2} \subset \cdots$. We have $\lambda\left(C_{n}\right)=$ $\lambda\left(A_{1}\right)-\lambda\left(A_{n}\right)$. Also, $A_{1} \backslash A=\cup_{n} C_{n}$. Thus, $A_{1} \cap\left(\cap A_{i}\right)^{c}=$ $\cup\left(A_{1} \backslash A_{n}\right)$, and so

$$
\mu\left(A_{1} \backslash A\right)=\lim _{i \rightarrow \infty} \mu\left(C_{i}\right)=\mu\left(A_{1}\right)-\lim _{i \rightarrow \infty} \mu\left(A_{n}\right) .
$$

Hence, $\mu\left(A_{1}\right) \rightarrow \mu(A)$.

Properties of the Integral.

(a) If $0 \leq f \leq g$ on E, then $\int_{E} f d \mu \leq \int_{E} g d \mu$.
(b) If $A \subset B, A, B \in \mathcal{M}$, and $f \geq 0$, then $\int_{A} f d \mu \leq \int_{B} f d \mu$.
(c) If $f \geq 0$ and $c \in[0, \infty)$ is a non-negative constant, then $\int_{E} c f d \mu=c \int_{E} f d \mu$.
(d) If $f(x)=0$ for all $x \in E$, then $\int_{E} f d \mu=0$.
(e) If $\mu(E)=0$, then $\int_{E} f d \mu=0$.
(f) If $f \geq 0$, then $\int_{E} f d \mu=\int_{E} \chi_{E} f d \mu$.

Proof. (a) If $s \leq f$ is simple, then $s \leq g$ so the sup on g is over a larger class of simple functions than the sup on f.
(b) We have $E_{i} \cap A \subset E_{i} \cap B$ for all E_{i}. If s is simple,

$$
\int_{A} s d \mu=\sum_{i=1}^{N} \alpha_{i} \mu\left(E_{i} \cap A\right) \leq \sum_{i=1}^{N} \alpha_{i} \mu\left(E_{i} \cap B\right)=\int_{B} s d \mu .
$$

(c) For any simple $s, \int_{E} c s d \mu=c \int_{E} s d \mu$ since

$$
\sum_{i}\left(c \alpha_{i}\right) \chi_{E_{i}}=c \sum_{i} \alpha_{i} \chi_{E_{i}} .
$$

For any constant $c, s \leq f \Longleftrightarrow c s \leq c f$. Thus,

$$
\int c f=\sup _{s \leq c f} \int s=\sup _{s / c \leq f} \int s=\sup _{s^{\prime} f} \int c s^{\prime}=c \int f
$$

(d) Let $s \leq f$ be simple and $s=\sum_{i=1}^{N} \alpha_{i} \chi_{E_{i}}$. Without loss of generality, $\alpha_{1}=0$ and $E_{1} \supset E$. Thus,

$$
\int_{E} s d \mu=\sum_{i=1}^{N} \alpha_{i} \mu\left(E_{i} \cap E\right)=\alpha_{1} \mu(E)=0
$$

(The convention here and throughout is that $0 \cdot \infty=0$.)
(e) If $s \leq f$ and $s=\sum_{i} \alpha_{i} \chi_{E_{i}}$, then $\int_{E} s=\sum_{i} \alpha_{i} \mu\left(E \cap E_{i}\right)=0$.
(f) This could have been the definition of the integral.

[^0]: Date: September 11, 2003.

