MEASURE AND INTEGRATION: LECTURE 23

Lebesgue's differentiation theorem.

Theorem 0.1. Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$. Then for almost every $x \in \mathbb{R}^{n}$,

$$
\lim _{r \rightarrow 0} \frac{1}{\lambda(B(x, r))} \int_{B(x, r)}|f(y)-f(x)| d y=0
$$

In particular, for a.e. $x \in \mathbb{R}^{n}$,

$$
\lim _{r \rightarrow 0} \frac{1}{\lambda(B(x, r))} \int_{B(x, r)} f(y) d y=f(x)
$$

Remark. This looks like the FTOC I almost everywhere: the derivative of the integral of $f=f$. Next time, prove this and show it implies FTOC in the case of \mathbb{R}.

Proof of theorem. Obviously,

$$
\begin{aligned}
& \left|\left(\frac{1}{\lambda(B(x, r))} \int_{B(x, r)} f(y) d y\right)-f(x)\right| \\
& =\left|\frac{1}{\lambda(B(x, r))} \int_{B(x, r)}(f(y)-f(x))\right| \\
& \leq \frac{1}{\lambda(B(x, r))} \int_{B(x, r)}|f(y)-f(x)| d y .
\end{aligned}
$$

Thus, the particular case of the theorem follows from the first statement.

Recall that if $f \in L^{1}$, we can define the maximal function $M f$, and

$$
\lambda(\{x \mid M f(x) \geq t\})<\frac{3^{n}\|f\|_{1}}{t}
$$

Also,

$$
\{x \mid M f(x) \geq t\}=\bigcap_{j=1}^{\infty}\{x \mid M f(x)>t-1 / j\}
$$

so

$$
\lambda\left(\{x \mid M f(x) \geq t\} \leq \frac{3^{n}\|f\|_{1}}{t}\right.
$$

Date: November 25, 2003.

Define

$$
f^{*}(x)=\limsup _{r \rightarrow 0} \frac{1}{\lambda(B(x, r))} \int_{B(x, r)}|f(y)-f(x)| d y .
$$

We want to show that $f^{*}(x)=0$ a.e. The function f^{*} has the following properties.
(1) $f^{*} \geq 0$.
(2) $(f+g)^{*} \leq f^{*}+g^{*}$.

Proof.

$$
\begin{aligned}
& \int_{B(x, r)}|f(y)+g(y)-f(x)-g(x)| d y \\
& =\int_{B(x, r)}|f(y)-f(x)+g(y)-g(x)| d y \\
& \leq \int_{B(x, r)}|f(y)-f(x)| d y+\int_{B(x, r)}|g(y)-g(x)| d y
\end{aligned}
$$

(3) If g is continuous at x, then $g^{*}(x)=0$.

Proof. For any $\epsilon>0$, there exists δ such that $|g(y)-g(x)| \leq \epsilon$ for all $y \in B(x, \delta)$. So, for $0<r \leq \delta$,
$\frac{1}{\lambda(B(x, r))} \int_{B(x, r)}|g(y)-g(x)| d y \leq \frac{1}{\lambda(B(x, r))} \epsilon \lambda(B(x, r))=\epsilon$.
Thus, $g^{*}(x)<\epsilon$ for any ϵ, and hence $g^{*}(x)=0$.
Note that this is FTOC for continuous functions. The strategy is that we know it is true for continuous functions, so we will approximate $f \in L^{1}\left(\mathbb{R}^{n}\right)$ by $g \in C^{0}\left(\mathbb{R}^{n}\right)$.
(4) If g is continuous, then $(f-g)^{*}=f^{*}$.

Proof.

$$
(f-g)^{*} \leq f^{*}+(-g)^{*}=f^{*}
$$

and

$$
f^{*} \leq(f-g)^{*}+g^{*}=(f-g)^{*}
$$

(5) $f^{*} \leq M f+|f|$.

Proof.

$$
\begin{aligned}
& \frac{1}{\lambda(B(x, r))} \int_{B(x, r)}|f(y)-f(x)| d y \\
& \leq \frac{1}{\lambda(B(x, r))} \int_{B(x, r)}(|f(y)|+|f(x)|) d y \\
& =\left(\frac{1}{\lambda(B(x, r))} \int_{B(x, r)}|f(y)| d y\right)+|f(x)| \\
& \leq M f+|f(x)|
\end{aligned}
$$

(6) Have not proved that f^{*} is measurable, but claim

$$
\lambda^{*}\left(\left\{x \mid f^{*}(x)>t\right\}\right) \leq \frac{2\left(3^{n}+1\right)}{t}\|f\|_{1} \quad \text { for all } 0<t<\infty .
$$

Proof. If $f^{*}(x)>t$ at x, then from (5),

$$
t<M f(x)+|f|(x),
$$

and so either $M f(x)>t / 2$ or $|f(x)|>t / 2$. So,

$$
\left\{f^{*}>t\right\} \subset\{M f>t / 2\} \cup\{|f|>t / 2\}
$$

Thus,

$$
\begin{aligned}
\lambda^{*}\left(\left\{x \mid f^{*}(x)>t\right\}\right) & \leq \lambda(\{x \mid M f(x)>t / 2\})+\lambda(\{x| | f(x) \mid>t / 2\}) \\
& \leq \frac{3^{n}\|f\|_{1}}{t / 2}+\frac{\|f\|_{1}}{t / 2}
\end{aligned}
$$

The last step used the theorem from last time and Chebyshev's inequality for L^{1} functions.

To finish the proof, given $\epsilon>0$, from the approximation theorem $\left(C_{c}\left(\mathbb{R}^{n}\right)\right.$ dense in $\left.L^{1}\right)$, there exists $g \in C_{c}\left(\mathbb{R}^{n}\right)$ with $\|f-g\|_{1} \leq \epsilon\left(f^{*}=\right.$ $(f-g)^{*}$.) Thus,

$$
\begin{aligned}
\lambda^{*}\left(\left\{x \mid f^{*}(x)>t\right\}\right) & =\lambda^{*}\left(\left\{x \mid(f-g)^{*}(x)>t\right\}\right) \\
& \leq \frac{2\left(3^{n}+1\right)}{t}\|f-g\|_{1} \\
& \leq \frac{2\left(3^{n}+1\right)}{t} \epsilon .
\end{aligned}
$$

Since ϵ is arbitrary, $\lambda^{*}\left(\left\{x \mid f^{*}(x)>t\right\}\right)=0$. In particular, $\lambda^{*}\left(\left\{x \mid f^{*}(x)>\right.\right.$ $1 / k\})=0$ for all k, and $\left\{x \mid f^{*}(x)>0\right\}=\cup_{k=1}^{\infty}\left\{x \mid f^{*}(x)>1 / k\right\}$. Since countable union $\Rightarrow \lambda\left(\left\{x \mid f^{*}(x)>0\right\}\right)=0$. Since $f^{*} \geq 0, f^{*}=0$ almost everywhere.

Lebesgue set. Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$. Then $x \in \mathbb{R}^{n}$ is in the Lebesgue set of f if there exists a number A such that

$$
\lim _{r \rightarrow 0} \frac{1}{\lambda(B(x, r))} \int_{B(x, r)}|f(y)-A| d y=0
$$

From before, we see that A is unique (for each x).
Note that f does not have to be defined at x in order for x to be in the Lebesgue set of f. If $f=g$ a.e., then the Lebesgue set of f coincides with the Lebesgue set of g. If we think of functions in $L^{1}\left(\mathbb{R}^{n}\right)$ as equivalence classes, then the Lebesgue set of f is well defined.

Lebesgue's theorem. Almost every $x \in \mathbb{R}^{n}$ is in the Lebesgue set of f, and if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the representation of equivalence classes $[f]$, then $A=f(x)$. For emphasis: If $[f] \in L_{\mathrm{loc}}^{1}$ is an equivalence class, then for x in the Lebesgue set, $f(x)$ is well defined (defined by the above limit).

For example, let

$$
g(x)= \begin{cases}\sin (1 / x) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Then 0 is not in the Lebesgue set of g. Recall: continuous, then in Lebesgue set.

Regular convergence. A sequence of measurable functions E_{1}, E_{2}, \ldots converges regularly to x if there exists $c>0$ and r_{1}, r_{2}, \ldots such that $E_{k} \subset B\left(x, r_{k}\right), \lim _{k \rightarrow \infty} r_{k}=0$, and $\lambda\left(B\left(x, r_{k}\right)\right) \leq c \lambda\left(E_{k}\right)$ for all k.

Theorem 0.2. Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$, x in the Lebesgue set of f, and E_{1}, E_{2}, \ldots converge regularly to x. Then

$$
f(x)=\lim _{k \rightarrow \infty} \frac{1}{\lambda\left(E_{k}\right.} \int_{E_{k}} f(y) d y
$$

The point here is that we do not have to use balls.
Proof.

$$
\begin{aligned}
\left|\left(\frac{1}{\lambda\left(E_{k}\right)} \int_{E_{k}} f(y) d y\right)-f(x)\right| & \leq \frac{1}{\lambda\left(E_{k}\right)} \int_{E_{k}}|f(y)-f(x)| d y \\
& \leq \frac{c}{\lambda\left(B\left(x, r_{k}\right)\right)} \int_{B\left(x, r_{k}\right)}|f(y)-f(x)| d y \\
& \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$ since x is in the Lebesgue set of f.

FTOC II.

Theorem 0.3. Let $f \in L^{1}(\mathbb{R})$ and let $a \in \mathbb{R}$. Define

$$
F(x)=\int_{a}^{x} f(y) d y= \begin{cases}\int_{\mathbb{R}} f(y) \chi_{[a, x]}(y) d y & x \geq a \\ -\int_{\mathbb{R}} f(y) \chi_{[x, a]}(y) d y & x<a\end{cases}
$$

Then F is differentiable a.e. and $F^{\prime}=f$ a.e.
Proof. Almost every $x \in \mathbb{R}$ is in the Lebesgue set of f. We show that $F^{\prime}(x)=f(x)$ for x in the Lebesgue set of f. By the previous theorem,

$$
\lim _{k \rightarrow \infty} \frac{1}{\lambda\left(E_{k}\right)} \int_{E_{k}} f(y) d y=f(x)
$$

for any regular sequence converging to x. Let $r_{k}>0$ such that $\lim r_{k}=$ 0 and $E_{k}=\left(x, x+r_{k}\right)$. Then E_{k} regular and

$$
\lim _{k \rightarrow \infty} \frac{1}{r_{k}} \int_{x}^{x+r_{k}} f(y) d y=f(x)
$$

i.e.,

$$
\lim _{k \rightarrow \infty} \frac{F\left(x+r_{k}\right)-F(x)}{r_{k}}=f(x) .
$$

Since r_{k} arbitrary,

$$
\lim _{h \rightarrow 0^{+}} \frac{F(x+h)-F(x)}{h}=f(x),
$$

and F is right differentiable. Repeat the argument with $E_{k}=\left(x-r_{k}, x\right)$ and

$$
\lim _{h \rightarrow 0^{-}} \frac{F(x+h)-F(x)}{h}=f(x)
$$

so F is left and right differentiable and both one-sided derivatives equal $f(x)$. Thus, $F^{\prime}(x)=f(x)$ for any x in the Lebesgue set, which is almost everywhere by the Lebesgue theorem.

