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MEASURE AND INTEGRATION: LECTURE 23 

Lebesgue’s differentiation theorem. 

Theorem 0.1. Let f ∈ L1(Rn). 

1 
lim f(y) − f(x) dy = 0. 
r→0 λ(B(x, r)) 

| |
B(x,r) 

Then for almost every x ∈ Rn , 

In particular, for a.e. x ∈ Rn , 

1 
lim f(y) dy = f(x). 

λ(B(x, r)) B(x,r)r 0→

Remark. This looks like the FTOC I almost everywhere: the deriva
tive of the integral of f = f . Next time, prove this and show it implies 
FTOC in the case of R. 

Proof of theorem. Obviously, 

1 
f(y) dy − f(x)

λ(B(x, r)) B(x,r) 

λ(B(x, r)) 
1 

= (f(y) − f(x)) 
B(x,r) 

1 
f(y) − f(x) dy. ≤ 

λ(B(x, r)) B(x,r) 
| | 

Thus, the particular case of the theorem follows from the first state
ment. 

Recall that if f ∈ L1, we can define the maximal function Mf , and 

3n 

λ({x Mf(x) ≥ t}) < 
�f�1 .|
t 

Also, 
∞

x Mf(x) ≥ t} = x Mf(x) > t − 1/j},{ |{ |
j=1

so 
3n 

x .λ({ | Mf(x) ≥ t} ≤ 
�
t

f�1 
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2 MEASURE AND INTEGRATION: LECTURE 23 

Define 

1 
f ∗(x) = lim sup 

λ(B(x, r)) B(x,r) 
|f (y) − f (x) dy. 

r 0 
|

→

We want to show that f ∗(x) = 0 a.e. The function f ∗ has the following 
properties. 

(1) f ∗ ≥ 0. 
(2) (f + g)∗ ≤ f ∗ + g∗. 

Proof. 

f (y) + g(y) − f (x) − g(x) dy| |
B(x,r) 

= f (y) − f (x) + g(y) − g(x) dy| |�B(x,r) 

f (y) − f (x) dy + g(y) − g(x) dy. ≤ 
B(x,r) 

| | 
B(x,r) 

| | 

(3) If g is continuous at x, then g∗(x) = 0. 

Proof. For any � > 0, there exists δ such that g(y) − g(x)| | ≤ � 
for all y ∈ B(x, δ). So, for 0 < r ≤ δ, 

1 1 
g(y) − g(x) dy ≤ �λ(B(x, r)) = �. 

λ(B(x, r)) 
| | 

λ(B(x, r))B(x,r) 

Thus, g∗(x) < � for any �, and hence g∗(x) = 0. � 

Note that this is FTOC for continuous functions. The strat
egy is that we know it is true for continuous functions, so we 
will approximate f ∈ L1(Rn) by g ∈ C0(Rn). 

(4) If g is continuous, then (f − g)∗ = f ∗. 

Proof. 

(f − g)∗ ≤ f ∗ + (−g)∗ = f ∗ 

and 

f ∗ ≤ (f − g)∗ + g∗ = (f − g)∗. 

(5) f ∗ ≤ M f + f .| |
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3 MEASURE AND INTEGRATION: LECTURE 23 

Proof. 

1 
f(y) − f(x) dy

λ(B(x, r)) B(x,r) 
| | 

1 
(|f(y) + f(x) ) dy≤ 

λ(B(x, r)) 
| | |� 

B�(x,r) 

1 
= f(y)| dy + |f(x)

λ(B(x, r)) B(x,r) 
| | 

≤ Mf + f(x)| | 

(6) Have not proved that f ∗ is measurable, but claim 

λ∗({x f ∗(x) > t}) ≤ 
2(3n + 1) �f�1 for all 0 < t < ∞.| 

t


Proof. If f ∗(x) > t at x, then from (5),


t < Mf(x) + |f | (x),


and so either Mf(x) > t/2 or |f(x) > t/2. So,
|
{f ∗ > t} ⊂ {Mf > t/2} ∪ {|f > t/2}.|

Thus, 

λ∗({x f ∗(x) > t}) ≤ λ({x Mf(x) > t/2}) + λ({x f(x) > t/2})| | | | |
3n �f�1 + 

�f�1 .≤ 
t/2 t/2 

The last step used the theorem from last time and Chebyshev’s 
inequality for L1 functions. � 

To finish the proof, given � > 0, from the approximation theorem 
(Cc(Rn) dense in L1), there exists g ∈ Cc(Rn) with �f − g�1 ≤ � (f ∗ = 
(f − g)∗.) Thus, 

λ∗({x f ∗(x) > t}) = λ∗({x (f − g)∗(x) > t})| |
2(3n + 1) �f − g�1≤ 

t 
2(3n + 1) ≤ 

t 
Since � is arbitrary, λ∗({x f ∗(x) > t}) = 0. In particular, λ∗({x f ∗(x) > 
1/k}) = 0 for all k, and 

|
{x f ∗(x) > 0} = ∪∞k=1{x f ∗(x) >

|
1/k}. 

Since countable union λ({x
| 

f ∗(x) > 0}) = 0. Since
| 

f ∗ ≥ 0, f ∗ = 0 ⇒ |
�almost everywhere. 
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4 MEASURE AND INTEGRATION: LECTURE 23 

Lebesgue set. Let f ∈ L1(Rn). Then x ∈ Rn is in the Lebesgue set 
of f if there exists a number A such that 

1 
lim f(y) − A dy = 0. 
r 0 λ(B(x, r)) B(x,r) 

| |
→

From before, we see that A is unique (for each x). 
Note that f does not have to be defined at x in order for x to be 

in the Lebesgue set of f . If f = g a.e., then the Lebesgue set of f 
coincides with the Lebesgue set of g. If we think of functions in L1(Rn) 
as equivalence classes, then the Lebesgue set of f is well defined. 

Lebesgue’s theorem. Almost every x ∈ Rn is in the Lebesgue set of 
f , and if f : Rn R is the representation of equivalence classes [f ],→
then A = f(x). For emphasis: If [f ] ∈ L1 

loc is an equivalence class, then 
for x in the Lebesgue set, f(x) is well defined (defined by the above 
limit). 

For example, let 

g(x) = 
sin(1/x) 

0 

x �= 0; 

x = 0. 

Then 0 is not in the Lebesgue set of g. Recall: continuous, then in 
Lebesgue set. 

Regular convergence. A sequence of measurable functions E1, E2, . . . 
converges regularly to x if there exists c > 0 and r1, r2, . . . such that 
Ek ⊂ B(x, rk ), limk→∞ rk = 0, and λ(B(x, rk )) ≤ cλ(Ek ) for all k. 

Theorem 0.2. Let f ∈ L1(Rn), x in the Lebesgue set of f , and 
E1, E2, . . . converge regularly to x. Then 

1 
f(x) = lim f(y) dy. 

λ(Ekk→∞ Ek 

The point here is that we do not have to use balls. 

Proof. 

1 
λ(Ek ) Ek 

f(y) dy − f(x)

1 

f(y) − f(x) dy≤ 
λ(Ek ) 

| |
Ek 

c 
f(y) − f(x) dy≤ 

λ(B(x, rk )) 
| |

B(x,rk ) 

0→

as k →∞ since x is in the Lebesgue set of f . � 
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5 MEASURE AND INTEGRATION: LECTURE 23 

FTOC II. 

Theorem 0.3. Let f ∈ L1(R) and let a ∈ R. Define 
x 

F (x) = f (y) dy = R�f (y)χ[a,x](y) dy x ≥ a; 

a − R f (y)χ[x,a](y) dy x < a. 

Then F is differentiable a.e. and F � = f a.e. 

Proof. Almost every x ∈ R is in the Lebesgue set of f . We show that 
F �(x) = f (x) for x in the Lebesgue set of f . By the previous theorem, 

1 
lim f (y) dy = f (x)

λ(Ek )k→∞ Ek 

for any regular sequence converging to x. Let rk > 0 such that lim rk = 
0 and Ek = (x, x + rk ). Then Ek regular and 

1 x+rk 

lim f (y) dy = f (x), 
rk x k→∞ 

i.e., 

lim 
F (x + rk ) − F (x)

= f (x). 
rkk→∞ 

Since rk arbitrary, 

lim 
F (x + h) − F (x)

= f (x), 
h 0+ h→

and F is right differentiable. Repeat the argument with Ek = (x−rk , x) 
and 

lim 
F (x + h) − F (x)

= f (x), 
h 0− h→

so F is left and right differentiable and both onesided derivatives equal 
f (x). Thus, F �(x) = f (x) for any x in the Lebesgue set, which is almost 
everywhere by the Lebesgue theorem. � 


