MEASURE AND INTEGRATION: LECTURE 17

Inclusions between L^p **spaces.** Consider Lebesgue measure on the space $(0, \infty) \subset \mathbb{R}$. Recall that x^a is integrable on $(0, 1) \iff a > -1$, and it is integrable on $(1, \infty) \iff a < -1$. Now let $1 \le p < q \le \infty$. Choose b such that 1/q < b < 1/p. Then $x^{-b}\chi_{(0,1)}$ is in L^p but not in L^q , which shows that $L^p \not\subset L^q$. On the other hand, $x^{-b}\chi_{(1,\infty)}$ is in L^q but not in L^p , so that $L^q \not\subset L^p$. Thus, in general there is no inclusion relation between two L^p spaces.

The limit of $||f||_p$ as $p \to \infty$. For convenience, define $||f||_p$ to be ∞ if f is \mathcal{M} -measurable but $f \notin L^p$.

Theorem 0.1. Let $f \in L^r$ for some $r < \infty$. Then

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}$$

This justifies the notation for the L^{∞} norm.

Proof. Let $t \in [0, ||f||_{\infty})$. By definition, the set

$$A = \{x \in X \mid |f(x)| \ge t\}$$

has positive measure. Observe the trivial inequality

$$\|f\|_{p} \ge \left(\int_{A} |f|^{p} d\mu\right)^{1/p}$$
$$\ge (t^{p}\mu(A))^{1/p}$$
$$= t\mu(A)^{1/p}.$$

If $\mu(A)$ is finite, then $\mu(A)^{1/p} \to 1$ as $p \to \infty$. If $\mu(A) = \infty$, then $\mu(A)^{1/p} = \infty$. In both cases, we have

$$\liminf_{p \to \infty} \|f\|_p \ge t.$$

Since t is arbitrary,

$$\liminf_{p \to \infty} \|f\|_p \ge \|f\|_{\infty} \,.$$

Date: October 30, 2003.

For the reverse inequality, we need the assumption that $f \in L^r$ for some (finite) r. For r , we have

$$\|f\|_{p} \leq \|f\|_{r}^{r/p} \|f\|_{\infty}^{1-r/p}$$

Since $\|f\|_r < \infty$,

$$\limsup_{p \to \infty} \|f\|_p \le \|f\|_{\infty} \,.$$

The inequality used in the proof can be written as

$$\mu(\{x \in X \mid |f(x)| \ge t\}) \le \left(\frac{\|f\|_p}{t}\right)^p,$$

and is known as Chebyshev's inequality.

Finite measure spaces. If the measure of the space X is finite, then there are inclusion relations between L^p spaces. To exclude trivialities, we will assume throughout that $0 < \mu(X) < \infty$.

Theorem 0.2. If $q \leq p < q < \infty$, then $L^q \subset L^p$.

Proof. Applying Hölder's inequality to $|f|^p$ and 1,

$$\int |f|^p \ d\mu = \int |f|^p \cdot 1 \ d\mu$$
$$\leq \left(\int |f|^{pq/p} \ d\mu \right)^{p/q} \left(\int d\mu \right)^{1-p/q}$$
$$= \left(\int |f|^q \ d\mu \right)^{p/q} \mu(X)^{1-p/q}.$$

In particular, if $\mu(X) = 1$, then

$$||f||_1 \le ||f||_p \le ||f||_q \le ||f||_{\infty}.$$

Counting measure and l^p spaces. Let X be any set, $\mathcal{M} = \mathcal{P}(X)$, and μ be the counting measure. Recall that $\mu(A)$ is the number of points in A if A is finite and equals ∞ otherwise. Integration is simply

$$\int_X f \ d\mu = \sum_{x \in X} f(x)$$

for any non-negative function f, and L^p is denoted by l^p .

Theorem 0.3. If $1 \le p < q \le \infty$, then $l^p \subset l^q$, and

$$||f||_{\infty} \le ||f||_{q} \le ||f||_{p} \le ||f||_{1}$$

Proof. If $q = \infty$, then observe that for any $x_0 \in X$,

$$|f(x_0)| \le \left(\sum_{x \in X} |f(x)|^p\right)^{1/p}$$

Now let $q < \infty$. Then we NTS

$$\left(\sum_{x \in X} |f(x)|^q\right)^{1/q} \le \left(\sum_{x \in X} |f(x)|^p\right)^{1/p}$$

Now multiply both sides by a constant so that the RHS is equal to 1. Thus, assuming $\sum |f(x)|^p = 1$, we NTS that $\sum |f(x)|^q \leq 1$. But this is immediate, since $|f(x)| \leq 1$ for all x implies that $|f(x)|^q \leq |f(x)|^p$ because q > p.

Thus, in a certain sense, the counting measure and a finite measure act in reverse ways for L^p spaces.

Local L^P **spaces.** Let G be an open set in \mathbb{R}^n . The *local* L^p *space* on G consists of all \mathcal{L} -measurable functions f defined a.e. on G such that for every compact set $K \subset G$, the characteristic function $f\chi_K$ has a finite L^p norm; that is,

$$\int_{K} |f(x)|^{p} dx < \infty \quad \text{if } 1 \le p < \infty;$$

f is essentially bounded on K if $p = \infty$.

This set is denoted $L^p_{loc}(G)$. From our result on finite measure spaces, we have at once for $1 \le p < q \le \infty$,

$$L^{\infty}_{\text{loc}}(G) \subset L^{q}_{\text{loc}}(G) \subset L^{p}_{\text{loc}}(G) \subset L^{1}_{\text{loc}}(G).$$

Convexity properties of L^p norm. Let (X, \mathcal{M}, μ) be a measure space.

Theorem 0.4. Let $1 \leq p < r < q < \infty$ and suppose $f \in L^p \cap L^q$. Then $f \in L^r$ and

$$\log \|f\|_{r} \leq \frac{\frac{1}{r} - \frac{1}{q}}{\frac{1}{p} - \frac{1}{q}} \log \|f\|_{p} + \frac{\frac{1}{p} - \frac{1}{r}}{\frac{1}{p} - \frac{1}{q}} \log \|f\|_{q}.$$

Proof. Since 1/q < 1/r < 1/p, there exists a unique θ such that

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}$$

The number θ satisfies $0 < \theta < 1$ and equals

$$\theta = \frac{\frac{1}{r} - \frac{1}{q}}{\frac{1}{p} - \frac{1}{q}}, \quad 1 - \theta = \frac{\frac{1}{p} - \frac{1}{r}}{\frac{1}{p} - \frac{1}{q}}.$$

We NTS that $\log \|f\|_r \le \theta \log \|f\|_p + (1-\theta) \log \|f\|_q$. Note that

$$1 = \frac{r\theta}{p} + \frac{r(1-\theta)}{q},$$

and so $p/r\theta$ and $q/r(1-\theta)$ are conjugate exponents. Thus, by Hölder's inequality,

$$\begin{split} \|f\|_{r} &= \left\| f^{\theta} f^{1-\theta} \right\|_{r} \\ &= \left\| f^{r\theta} f^{r(1-\theta)} \right\|_{1}^{1/r} \\ &\leq \left(\left\| f^{r\theta} \right\|_{p/r\theta} \left\| f^{r(1-\theta)} \right\|_{q/r(1-\theta)} \right)^{1/r} \\ &= \left(\left\| f \right\|_{p}^{r\theta} \left\| f \right\|_{q}^{r(1-\theta)} \right)^{1/r} \\ &= \left\| f \right\|_{p}^{\theta} \left\| f \right\|_{q}^{1-\theta} . \end{split}$$

The theorem states that if f is an \mathcal{M} -measurable non-zero function on X, then the set of indices p such that $f \in L^p$ is an interval $I \subset [1, \infty]$, and $\log ||f||_p$ is a convex function of 1/p on I.