MEASURE AND INTEGRATION: LECTURE 17

Inclusions between L^{p} spaces. Consider Lebesgue measure on the space $(0, \infty) \subset \mathbb{R}$. Recall that x^{a} is integrable on $(0,1) \Longleftrightarrow a>-1$, and it is integrable on $(1, \infty) \Longleftrightarrow a<-1$. Now let $1 \leq p<q \leq \infty$. Choose b such that $1 / q<b<1 / p$. Then $x^{-b} \chi_{(0,1)}$ is in L^{p} but not in L^{q}, which shows that $L^{p} \not \subset L^{q}$. On the other hand, $x^{-b} \chi_{(1, \infty)}$ is in L^{q} but not in L^{p}, so that $L^{q} \not \subset L^{p}$. Thus, in general there is no inclusion relation between two L^{p} spaces.

The limit of $\|f\|_{p}$ as $p \rightarrow \infty$. For convenience, define $\|f\|_{p}$ to be ∞ if f is \mathcal{M}-measurable but $f \notin L^{p}$.
Theorem 0.1. Let $f \in L^{r}$ for some $r<\infty$. Then

$$
\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}
$$

This justifies the notation for the L^{∞} norm.
Proof. Let $t \in\left[0,\|f\|_{\infty}\right)$. By definition, the set

$$
A=\{x \in X| | f(x) \mid \geq t\}
$$

has positive measure. Observe the trivial inequality

$$
\begin{aligned}
\|f\|_{p} & \geq\left(\int_{A}|f|^{p} d \mu\right)^{1 / p} \\
& \geq\left(t^{p} \mu(A)\right)^{1 / p} \\
& =t \mu(A)^{1 / p}
\end{aligned}
$$

If $\mu(A)$ is finite, then $\mu(A)^{1 / p} \rightarrow 1$ as $p \rightarrow \infty$. If $\mu(A)=\infty$, then $\mu(A)^{1 / p}=\infty$. In both cases, we have

$$
\liminf _{p \rightarrow \infty}\|f\|_{p} \geq t
$$

Since t is arbitrary,

$$
\liminf _{p \rightarrow \infty}\|f\|_{p} \geq\|f\|_{\infty}
$$

[^0]For the reverse inequality, we need the assumption that $f \in L^{r}$ for some (finite) r. For $r<p<\infty$, we have

$$
\|f\|_{p} \leq\|f\|_{r}^{r / p}\|f\|_{\infty}^{1-r / p}
$$

Since $\|f\|_{r}<\infty$,

$$
\limsup _{p \rightarrow \infty}\|f\|_{p} \leq\|f\|_{\infty} .
$$

The inequality used in the proof can be written as

$$
\mu\left(\{x \in X||f(x)| \geq t\}) \leq\left(\frac{\|f\|_{p}}{t}\right)^{p}\right.
$$

and is known as Chebyshev's inequality.
Finite measure spaces. If the measure of the space X is finite, then there are inclusion relations between L^{p} spaces. To exclude trivialities, we will assume throughout that $0<\mu(X)<\infty$.

Theorem 0.2. If $q \leq p<q<\infty$, then $L^{q} \subset L^{p}$.
Proof. Applying Hölder's inequality to $|f|^{p}$ and 1,

$$
\begin{aligned}
\int|f|^{p} d \mu & =\int|f|^{p} \cdot 1 d \mu \\
& \leq\left(\int|f|^{p q / p} d \mu\right)^{p / q}\left(\int d \mu\right)^{1-p / q} \\
& =\left(\int|f|^{q} d \mu\right)^{p / q} \mu(X)^{1-p / q} .
\end{aligned}
$$

In particular, if $\mu(X)=1$, then

$$
\|f\|_{1} \leq\|f\|_{p} \leq\|f\|_{q} \leq\|f\|_{\infty} .
$$

Counting measure and l^{p} spaces. Let X be any set, $\mathcal{M}=\mathcal{P}(X)$, and μ be the counting measure. Recall that $\mu(A)$ is the number of points in A if A is finite and equals ∞ otherwise. Integration is simply

$$
\int_{X} f d \mu=\sum_{x \in X} f(x)
$$

for any non-negative function f, and L^{p} is denoted by l^{p}.
Theorem 0.3. If $1 \leq p<q \leq \infty$, then $l^{p} \subset l^{q}$, and

$$
\|f\|_{\infty} \leq\|f\|_{q} \leq\|f\|_{p} \leq\|f\|_{1} .
$$

Proof. If $q=\infty$, then observe that for any $x_{0} \in X$,

$$
\left|f\left(x_{0}\right)\right| \leq\left(\sum_{x \in X}|f(x)|^{p}\right)^{1 / p}
$$

Now let $q<\infty$. Then we NTS

$$
\left(\sum_{x \in X}|f(x)|^{q}\right)^{1 / q} \leq\left(\sum_{x \in X}|f(x)|^{p}\right)^{1 / p}
$$

Now multiply both sides by a constant so that the RHS is equal to 1 . Thus, assuming $\sum|f(x)|^{p}=1$, we NTS that $\sum|f(x)|^{q} \leq 1$. But this is immediate, since $|f(x)| \leq 1$ for all x implies that $|f(x)|^{q} \leq|f(x)|^{p}$ because $q>p$.

Thus, in a certain sense, the counting measure and a finite measure act in reverse ways for L^{p} spaces.

Local L^{P} spaces. Let G be an open set in \mathbb{R}^{n}. The local L^{p} space on G consists of all \mathcal{L}-measurable functions f defined a.e. on G such that for every compact set $K \subset G$, the characteristic function $f \chi_{K}$ has a finite L^{p} norm; that is,

$$
\int_{K}|f(x)|^{p} d x<\infty \quad \text { if } 1 \leq p<\infty
$$

f is essentially bounded on $K \quad$ if $p=\infty$.
This set is denoted $L_{\mathrm{loc}}^{p}(G)$. From our result on finite measure spaces, we have at once for $1 \leq p<q \leq \infty$,

$$
L_{\mathrm{loc}}^{\infty}(G) \subset L_{\mathrm{loc}}^{q}(G) \subset L_{\mathrm{loc}}^{p}(G) \subset L_{\mathrm{loc}}^{1}(G)
$$

Convexity properties of L^{p} norm. Let (X, \mathcal{M}, μ) be a measure space.

Theorem 0.4. Let $1 \leq p<r<q<\infty$ and suppose $f \in L^{p} \cap L^{q}$. Then $f \in L^{r}$ and

$$
\log \|f\|_{r} \leq \frac{\frac{1}{r}-\frac{1}{q}}{\frac{1}{p}-\frac{1}{q}} \log \|f\|_{p}+\frac{\frac{1}{p}-\frac{1}{r}}{\frac{1}{p}-\frac{1}{q}} \log \|f\|_{q}
$$

Proof. Since $1 / q<1 / r<1 / p$, there exists a unique θ such that

$$
\frac{1}{r}=\frac{\theta}{p}+\frac{1-\theta}{q} .
$$

The number θ satisfies $0<\theta<1$ and equals

$$
\theta=\frac{\frac{1}{r}-\frac{1}{q}}{\frac{1}{p}-\frac{1}{q}}, \quad 1-\theta=\frac{\frac{1}{p}-\frac{1}{r}}{\frac{1}{p}-\frac{1}{q}}
$$

We NTS that $\log \|f\|_{r} \leq \theta \log \|f\|_{p}+(1-\theta) \log \|f\|_{q}$. Note that

$$
1=\frac{r \theta}{p}+\frac{r(1-\theta)}{q}
$$

and so $p / r \theta$ and $q / r(1-\theta)$ are conjugate exponents. Thus, by Hölder's inequality,

$$
\begin{aligned}
\|f\|_{r} & =\left\|f^{\theta} f^{1-\theta}\right\|_{r} \\
& =\left\|f^{r \theta} f^{r(1-\theta)}\right\|_{1}^{1 / r} \\
& \leq\left(\left\|f^{r \theta}\right\|_{p / r \theta}\left\|f^{r(1-\theta)}\right\|_{q / r(1-\theta)}\right)^{1 / r} \\
& =\left(\|f\|_{p}^{r \theta}\|f\|_{q}^{r(1-\theta)}\right)^{1 / r} \\
& =\|f\|_{p}^{\theta}\|f\|_{q}^{1-\theta} .
\end{aligned}
$$

The theorem states that if f is an \mathcal{M}-measurable non-zero function on X, then the set of indices p such that $f \in L^{p}$ is an interval $I \subset[1, \infty]$, and $\log \|f\|_{p}$ is a convex function of $1 / p$ on I.

[^0]: Date: October 30, 2003.

