MEASURE AND INTEGRATION: LECTURE 14

Convex functions. Let $\varphi:(a, b) \rightarrow \mathbb{R}$, where $-\infty \leq a<b \leq \infty$. Then φ is convex if $\varphi((1-t) x+t y) \leq(1-t) \varphi(x)+t \varphi(y)$ for all $x, y \in(a, b)$ and $t \in[0,1]$. Looking at the graph of φ, this means that $(t, \varphi(t))$ lies below the line segment connecting $(x, \varphi(x))$ and $(y, \varphi(y))$ for $x<t<y$.

Convexity is equivalent to the following. For $a<s<t<u<b$,

$$
\frac{\varphi(t)-\varphi(s)}{t-s} \leq \frac{\varphi(u)-\varphi(t)}{u-t}
$$

If φ is differentiable, then φ is convex on (a, b) if and only if, for $a<$ $s<t<b, \varphi^{\prime}(s) \leq \varphi^{\prime}(t)$. If φ is C^{2} (continuously twice differentiable), then φ^{\prime} increasing $\Rightarrow \varphi^{\prime \prime} \geq 0$.
Theorem 0.1. If φ is convex on (a, b), then φ is continuous on (a, b).
Jensen's inequality. Let $(\Omega, \mathcal{M}, \mu)$ be a measure space such that $\mu(\Omega)=1$ (i.e., μ is a probability measure). Let $f: \Omega \rightarrow \mathbb{R}$ and $f \in$ $L^{1}(\mu)$. If $a<f(x)<b$ for all $x \in \Omega$ and φ is convex on (a, b), then

$$
\varphi\left(\int_{\Omega} f d \mu\right) \leq \int_{\Omega}(\varphi \circ f) d \mu
$$

Proof. Let $t=\int_{\Omega} f d \mu$. Since $a<f<b$,

$$
a=a \cdot \mu(\Omega)<\int_{\Omega} f d \mu<b \cdot \mu(\Omega)=b,
$$

so $a<t<b$. Conversely,

$$
\frac{\varphi(t)-\varphi(s)}{t-s} \leq \frac{\varphi(u)-\varphi(t)}{u-t}
$$

Fix t, and let

$$
B=\sup _{a<s<t} \frac{\varphi(t)-\varphi(s)}{t-s}
$$

Then $\varphi(t)-\varphi(s) \leq B(t-s)$ for $s<t$. We have

$$
B \leq \frac{\varphi(u)-\varphi(t)}{u-t}
$$

Date: October 21, 2003.
for any $u \in(t, b)$, so $B(u-t) \leq \varphi(u)-\varphi(t)$ for $u>t$. Thus $\varphi(s) \geq$ $\varphi(t)+B(s-t)$ for any $a<s<b$. Let $s=f(x)$ for any $x \in \Omega$. Then

$$
\varphi(f(x))-\varphi(t)-B(f(x)-t) \geq 0
$$

for all $x \in \Omega$.
Now φ convex $\Rightarrow \varphi$ continuous, so $\varphi \circ f$ is measurable. Thus, integrating with respect to μ,

$$
\int_{X}(\varphi \circ f) d \mu-\int_{X} \varphi(t) d \mu-B \int_{X} f d \mu \geq 0
$$

and the inequality follows.

Examples.

(1) Let $\varphi(x)=e^{x}$ be a convex function. Then

$$
\exp \left(\int_{\Omega} f d \mu\right) \leq \int_{\Omega} e^{f} d \mu
$$

(2) Let $\Omega=\left\{p_{1}, \ldots, p_{n}\right\}$ be a finite set of points and define $\mu\left(\left\{p_{i}\right\}\right)=$ $1 / n$. Then $\mu(\Omega)=1$. Let $f: \Omega \rightarrow \mathbb{R}$ with $f\left(p_{i}\right)=x_{i}$. Then

$$
\begin{aligned}
& \quad \int_{\Omega} f d \mu=\sum_{i=1}^{n} f\left(p_{i}\right) \mu\left(\left\{p_{i}\right\}\right) \\
& =\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\exp \left(\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)\right) & \leq \int_{\Omega} e^{f} d \mu \\
& \leq \frac{1}{n}\left(e^{x_{1}}+\cdots+e^{x_{n}}\right)
\end{aligned}
$$

Let $y_{i}=e^{x_{i}}$. Then

$$
\left(y_{1}+\cdots+y_{n}\right)^{1 / n} \leq \frac{1}{n}\left(y_{1}+\cdots+y_{n}\right),
$$

which is the inequality between arithmetic and geometric means. We also could take $\mu\left(\left\{p_{i}\right\}\right)=\alpha_{i}>0$ and $\sum_{i=1}^{n} \alpha_{i}=1$. Then

$$
y_{1}^{\alpha_{1}} y_{2}^{\alpha_{2}} \cdots y_{n}^{\alpha_{n}} \leq \alpha_{1} y_{1}+\alpha_{2} y_{2}+\cdots+\alpha_{n} y_{n} .
$$

Hölder's and Minkowski's inequalities. We define numbers p and q to be conjugate exponents if $1 / p+1 / q=1$. The conjugate exponent of 1 is ∞. Conjugate exponents are the same if and only if $p=q=2$.

Theorem 0.2. Let p and q be conjugate exponents with $1<p<\infty$. Let (X, \mathcal{M}, μ) be a measure space and $f, g: X \rightarrow[0, \infty]$ measurable functions. Then

$$
\int_{X} f g d \mu \leq\left(\int_{X} f^{p} d \mu\right)^{1 / p}\left(\int_{X} g^{q} d \mu\right)^{1 / q} \quad(\text { Hölder's) }
$$

and
$\left(\int_{X}(f+g)^{p} d \mu\right)^{1 / p} \leq\left(\int_{X} f^{p} d \mu\right)^{1 / p}+\left(\int_{X} g^{p} d \mu\right)^{1 / p}$ (Minkowski's).
Proof. Hölder's. Without loss of generality we may assume that $\int_{X} f^{p}=$ 1 and $\int_{X} g^{q}=1$. Indeed, if $\int f^{p} \neq 0$ and $\int g^{q} \neq 0$, then let

$$
\bar{f}=\frac{f}{\left(\int_{X} f^{p}\right)^{1 / p}}, \quad \bar{g}=\frac{g}{\left(\int_{X} f^{p}\right)^{1 / p}}
$$

(Otherwise, if $\int f^{p}=0$, then $f^{p}=0$ a.e., and both sides of the inequality are equal to zero.) We claim that

$$
\begin{equation*}
a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q} \text { for all } a, b \in[0, \infty] . \tag{0.1}
\end{equation*}
$$

It is easy to check if a or b equals 0 or ∞. Assume $0<a<\infty$ and $0<b<\infty$, and write $a=e^{s / p}$ and $b=e^{t / q}$ for some $s, t \in \mathbb{R}$. Let $\Omega=\left\{x_{1}, x_{2}\right\}, \mu\left(x_{1}\right)=1 / p$, and $\mu\left(x_{2}\right)=1 / q$. We have

$$
\exp \int_{\Omega} f d \mu \leq \int_{\Omega} e^{f} d \mu
$$

where $f\left(x_{1}\right)=s$ and $f\left(x_{2}\right)=t$. Thus,

$$
\exp \left(\frac{s}{p}+\frac{t}{q}\right) \leq \frac{1}{p} e^{s}+\frac{1}{q} e^{t}
$$

so (0.1) follows. Thus,

$$
\int_{X}(f g) d \mu \leq \frac{1}{p} \int_{X} a^{p} d \mu+\frac{1}{q} \int_{X} b^{q} d \mu=\frac{1}{p}+\frac{1}{q}=1 .
$$

Minkowski's. Observe that

$$
(f+g)^{p}=f(f+g)^{p-1}+g(f+g)^{p-1} .
$$

Since p and q are conjugate exponents, $q=p /(p-1)$. Thus,

$$
\begin{aligned}
\int f(f+g)^{p-1} & \leq\left(\int f^{p}\right)^{1 / p}\left(\int(f+g)^{(p-1) p /(p-1)}\right)^{(p-1) / p} \\
& =\left(\int f^{p}\right)^{1 / p}\left(\int(f+g)^{p}\right)^{(p-1) / p}
\end{aligned}
$$

Similarly,

$$
\int f(f+g)^{p-1} \leq\left(\int f^{p}\right)^{1 / p}\left(\int(f+g)^{p}\right)^{(p-1) / p}
$$

Let $\Omega=\left\{x_{1}, x_{2}\right\}, \mu\left(x_{1}\right)=1 / 2=\mu\left(x_{2}\right)$, and $\varphi=t^{p}$. Then

$$
\left(\int_{\Omega} f d \mu\right)^{p} \leq \int_{\Omega} f^{p} d \mu
$$

so

$$
\left(\frac{a+b}{2}\right)^{p} \leq \frac{a^{p}}{2}+\frac{b^{p}}{2}
$$

Thus,

$$
\frac{1}{2^{p}} \int(f+g)^{p} \leq \frac{1}{2} \int f^{p}+\frac{1}{2} \int g^{p}<\infty .
$$

Since $1-(p-1) / p=1 / p$,

$$
\left(\int_{X}(f+g)^{p} d \mu\right)^{1 / p} \leq\left(\int_{X} f^{p} d \mu\right)^{1 / p}+\left(\int_{X} g^{p} d \mu\right)^{1 / p} .
$$

