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MEASURE AND INTEGRATION: LECTURE 14 

Convex functions. Let ϕ : (a, b) → R, where −∞ ≤ a < b ≤ ∞. 
Then ϕ is convex if ϕ((1 − t)x + ty) ≤ (1 − t)ϕ(x) + tϕ(y) for all 
x, y ∈ (a, b) and t ∈ [0, 1]. Looking at the graph of ϕ, this means that 
(t, ϕ(t)) lies below the line segment connecting (x, ϕ(x)) and (y, ϕ(y)) 
for x < t < y. 

Convexity is equivalent to the following. For a < s < t < u < b, 

ϕ(t) − ϕ(s) ϕ(u) − ϕ(t) 
. 

t− s 
≤ 

u− t 
If ϕ is differentiable, then ϕ is convex on (a, b) if and only if, for a < 

s < t < b, ϕ�(s) ≤ ϕ�(t). If ϕ is C2 (continuously twice differentiable), 
then ϕ� increasing ⇒ ϕ�� ≥ 0. 

Theorem 0.1. If ϕ is convex on (a, b), then ϕ is continuous on (a, b). 

Jensen’s inequality. Let (Ω,M, µ) be a measure space such that 
µ(Ω) = 1 (i.e., µ is a probability measure). Let f : Ω → R and f ∈
L1(µ). If a < f(x) < b for all x ∈ Ω and ϕ is convex on (a, b), then 

ϕ f dµ (ϕ ◦ f)dµ.≤ 
ΩΩ 

Proof. Let t = 
Ω f dµ. Since a < f < b, 

a = a · µ(Ω) < f dµ < b · µ(Ω) = b, 
Ω 

so a < t < b. Conversely, 

ϕ(t) − ϕ(s) ϕ(u) − ϕ(t) 
. 

t− s 
≤ 

u− t 
Fix t, and let 

ϕ(t) − ϕ(s)
B = sup . 

a<s<t t− s 
Then ϕ(t) − ϕ(s) ≤ B(t− s) for s < t. We have 

ϕ(u) − ϕ(t)
B ≤ 

u− t 
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2 MEASURE AND INTEGRATION: LECTURE 14 

for any u ∈ (t, b), so B(u − t) ≤ ϕ(u) − ϕ(t) for u > t. Thus ϕ(s) ≥
ϕ(t) + B(s− t) for any a < s < b. Let s = f(x) for any x ∈ Ω. Then 

ϕ(f(x)) − ϕ(t) − B(f(x) − t) ≥ 0 

for all x ∈ Ω. 
Now ϕ convex ϕ continuous, so ϕ f is measurable. Thus, inte⇒ ◦

grating with respect to µ, 

(ϕ ◦ f)dµ− ϕ(t) dµ− B f dµ ≥ 0, 
X X X 

and the inequality follows. � 

Examples. 

(1) Let ϕ(x) = ex be a convex function. Then 

exp f dµ e f dµ.≤ 
ΩΩ 

(2) Let Ω = {p1, . . . , pn} be a finite set of points and define µ({pi}) = 
1/n. Then µ(Ω) = 1. Let f : Ω R with f(pi) = xi. Then → � n

fdµ = f(pi)µ({pi}) 
Ω i=1 

1 
+ xn).= 

n 
(x1 + · · · 

Thus 

1 
exp + xn) ≤ e f dµ 

n 
(x1 + · · · 

Ω 

1 
(e x1 + e xn ).≤ 

n 
+ · · · 

xiLet yi = e . Then 

1 
+ yn)1/n + yn),(y1 + · · · ≤ 

n 
(y1 + · · · 

which is the inequality between arithmetic and geometric means. 
We also could take µ({pi}) = αi > 0 and n αi = 1. Then i=1 

α1 α2 αny1 y2 · · · yn ≤ α1y1 + α2y2 + · · · + αnyn. 
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Hölder’s and Minkowski’s inequalities. We define numbers p and 
q to be conjugate exponents if 1/p + 1/q = 1. The conjugate exponent 
of 1 is ∞. Conjugate exponents are the same if and only if p = q = 2. 

Theorem 0.2. Let p and q be conjugate exponents with 1 < p < ∞. 
Let (X, M, µ) be a measure space and f, g : X → [0, ∞] measurable 
functions. Then � �� �1/p �� �1/q 

f g dµ ≤ f p dµ gq dµ (Hölder’s) 
X X X 

and �� �1/p �� �1/p �� �1/p 

(f + g)pdµ ≤ 
X 

f p dµ + gp dµ (Minkowski’s). 
X X 

Proof. H¨� older’s. Without loss of generality we may assume that f p = � � X 
1 and 

X g
q = 1. Indeed, if f p = 0 and � gq = 0, then let 

f g
f = �� �1/p 

, g = �� .�1/p
f p f p 

X X 

(Otherwise, if f p = 0, then f p = 0 a.e., and both sides of the inequal
ity are equal to zero.) We claim that 

1 1 
(0.1) ab ≤ ap + bq for all a, b ∈ [0, ∞]. 

p q 

It is easy to check if a or b equals 0 or ∞. Assume 0 < a < ∞ and 
0 < b < ∞, and write a = es/p and b = et/q for some s, t ∈ R. Let 
Ω = {x1, x2}, µ(x1) = 1/p, and µ(x2) = 1/q. We have 

exp f dµ ≤ e f dµ, 
Ω Ω 

where f (x1) = s and f (x2) = t. Thus, 

s t 1 1 s exp + ≤ 
p
e + e t , 

p q q 

so (0.1) follows. Thus, 

1 1 1 1 
(f g)dµ ≤ ap dµ + bq dµ = + = 1. 

q X p qX p X 

Minkowski’s. Observe that 

(f + g)p = f (f + g)p−1 + g(f + g)p−1 . 
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Since p and q are conjugate exponents, q = p/(p − 1). Thus, � �� �1/p �� �(p−1)/p 

(f + g)(p−1)p/(p−1)f (f + g)p−1 ≤ f p 

�� �1/p �� �(p−1)/p 

= f p (f + g)p . 

Similarly, � �� �1/p �� �(p−1)/p 

(f + g)p .f (f + g)p−1 ≤ f p 

Let Ω = {x1, x2}, µ(x1) = 1/2 = µ(x2), and ϕ = tp. Then 
p 

f dµ f p dµ,≤ 
ΩΩ 

so � �
a + b p 

ap bp 

+ . 
2 

≤ 
2 2 

Thus, 
1 1 1 

(f + g)p gp < ∞. 
2p 

≤ 
2 

f p +
2 

Since 1 − (p − 1)/p = 1/p, �� �1/p �� �1/p �� �1/p 

(f + g)pdµ f p dµ + gp dµ .≤ 
XX X 


