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MEASURE AND INTEGRATION: LECTURE 13


Egoroff ’s theorem (pointwise convergence is nearly uniform. 

Theorem 0.1. Suppose µ(X) < ∞. Let fn : X C be a sequence of →
measurable functions such that fn f a.e. For all � > 0, there exists →
a measurable subset E ⊂ X with µ(X \ E) < � and such that fn f→
uniformly on E. 

Proof. Let 

S(n, k) = {x | |fi(x) − fj (x) < 1/k}.|
i,j>n

Clearly, S(n, k) is measurable, since it is the countable intersection of 
measurable sets. Note that 

S(n, k) = {· · · } ∩ {· · · } 
i,j>n+1 i=n,j>n+1

= S(n + 1, k) ∩ {stuff}. 

Thus, S(n, k) ⊂ S(n + 1, k), that is, for each k, we have an ascending 
sequence of sets. Claim: for each k, X = ∪∞ S(n, k). Given k,n=1

and x ∈ X, we know fi(x) → f(x). Thus there exists N such that 
fi(x) − fj (x) < 1/k for all i, j > N since any convergent sequence is | |
Cauchy. Thus, x ∈ S(N, k). Obviously 
 
∞ ∞

S(N, k) ⇒ X = S(n, k)X ⊃ 
n=1 n=1 

for each k. So we have 

lim µ(S(n, k)) → µ(X) 
n→∞ 

for any k. 
For each k = 1, 2, . . ., choose nk so that 

µ(S(nk , k) − µ(X) < �/2k .| | 
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2 MEASURE AND INTEGRATION: LECTURE 13 

(Recall µ(X) < ∞.) Let E = S(nk , k). Then X \ E = k=1(X \k=1 ∪∞
S(nk , k)). Thus, 

∩∞

∞

µ(X \ E) ≤ µ(X \ S(nk , k)) 
k=1 
∞

= µ(X) − µ(S(nk, k)) 
k=1 
∞

µ(X) − µ(S(nk , k))≤ | |
k=1 
∞

< �/2k = �. 
k=1 

Claim: fn → f uniformly on E; that is, given any δ > 0, there 
exists N such that fi(x) − fj (x) < δ for all i, j > N and every| |

E. Choose k such that 1/k < δ. If x ∈ S(n, k), by defix ∈
nition Fi(x) − fj (x) < δ for all i, j > n. In particular, for x ∈| |
S(nk , k), fi(x) − fj (x) < δ for all i, j > nk . But S(nk, k) ⊃ E, so |
|fi(x) − fj

|
(x) < δ for all i, j > nk and all x ∈ E. �| 

The theorem is not necessarily true if µ(X) = ∞. For example, if µ 
is Lebesgue measure on R and fn = χ[n,n+1]. Then fn → 0 pointwise, 
but for any n = m, fn(x) − fm(x) = 1 on a set of measure 2. 

Convergence in measure. Here is an example. Let fn : X R and� →
0. Then if � > 0,

X |fn| → � 
intX |fn| ≥ 

{x | fn>�} 
|fn| > �µ({x | fn(x) > �}). 

< �2So, given � > 0, choose N such that for all n > N , 
X |fn . Then|

� ≥ µ({x fn(x) > �} for all n > N .|
We say that fn → f in measure if given � > 0 there exists N such 

that, for all n ≥ N , µ({x f(x) − fn(x) > �}) < �.| | | 

Convergence almost everywhere implies convergence in mea
sure. 

Theorem 0.2. If fn → f a.e. and µ(X) < ∞, then fn f is→ 
measure. 

Proof. Let A = fn(x) → f(x)}. Then µ(X \ A) = 0. Since{x |
µ(X) < ∞, µ(A) < ∞ and we may apply Egoroff’s theorem. Thus, 
there exists a set E such that µ(A \ E) < � and fn → f uniformly on 
E. Given � > 0, there exists N such that f(x) − fn(x) < � for all | | 
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3 MEASURE AND INTEGRATION: LECTURE 13 

n > N and all x ∈ E. So, for n > N , f(x) − fn(x) can be greater | |
than � only on (A \ E) ∪ (X \ A). This means that 

µ({x fn(x) − f(x) > �}) ≤ µ(A \ E) + µ(X \ A)| | | 
< � + 0 = � 

for all n > N . � 

However, if fn f in measure, then it is not true that fn f a.e.→ � 1 
→

For example, fn : [0, 1] → [0, 1] such that limn→∞ fn(x) dx = 0 but 
0 

fn(x) → 0 for no x. 

Convergence in measure implies some subsequence conver
gence almost everywhere. 

Theorem 0.3. If fn → f in measure, then fn has a subsequence fnk 

such that limk→∞ f = f a.e.nk 

Proof. Let � = 2−k Given k, there exists N(k) such that for n ≥ N(k), 
µ({x f(x) − fn(x) > 2−k } < 2−k . Let E| | |
2−k Then µ(Ek ) < 2−k If x �∈ ∪∞

. 
fN (k)(x) − f(x) >
= {x | 

i, then x ∈ (∪∞
k 

Ei)
c = ∩∞ EE}. 

Then 
. i .i=k i=k i=k 

< 2−ifN (i)(x) − f(x) for every i ≥ k 

⇒ fN (i)(x) → f(x). 

Let 
∞

A = Ei. 
k=1 i=k 

So if x �∈ A, then fN (i)(x f(x). For any k,) → 


∞

∞

µ(A) ≤ µ (∪∞ Ei) ≤ 2−i = 2−k+1 ,i=k 

i=k 

so µ(A) = 0. � 

Dominated convergence theorem holds for convergence in mea
sure. We know that dominated convergence and monotone conver
gence still hold if we replace convergence with convergence almost ev
erywhere. Now we show that the theorems are valid if we replace 
convergence by convergence in measure. 

Theorem 0.4. Let fn : X C be a sequence of measurable functions →
defined a.e. Suppose fn → f in measure and |fn| ≤ |g| a.e. with 

Theng ∈ L1(µ). 

f dµ = lim fn dµ. 
X n→∞ 

c 
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Note that the pointwise limit of fn may not exist. 

Proof. Take any subsequence fnk . Clearly, fnk f in measure. There →
exists a subsequence f(nk )� such that f(nk )� → f pointwise a.e. Apply 
dominated convergence to this subsequence. Then 

f dµ = lim f(nk )� dµ. 
X X�→∞ 

Lemma 0.5. Let an be a sequence. If every subsequence has a subse
quence which converges to α, then limn→∞ an = α. 


