MEASURE AND INTEGRATION: LECTURE 1

Preliminaries. We need to know how to measure the "size" or "volume" of subsets of a space X before we can integrate functions $f: X \to \mathbb{R}$ or $f: X \to \mathbb{C}$.

We're familiar with volume in \mathbb{R}^n . What about more general spaces X? We need a measure function μ : {subsets of X} $\rightarrow [0, \infty]$.

For technical reasons, a measure will not be defined on *all* subsets of X, but instead a certain collection of subsets of X called a σ -algebra, a collection of subsets of X (i.e., a collection $\mathcal{M} \subset \mathcal{P}(X)$ that is a subset of the power set of X) satisfying the following:

 $(\sigma 1) \ X \in \mathcal{M}.$

 $(\sigma 2)$ If $A \in \mathcal{M}$, then $A^c \equiv X \setminus A \in \mathcal{M}$.

(σ 3) If $A_i \in \mathcal{M}$ (i = 1, 2, ...), then $\cup_{i=1}^{\infty} \in \mathcal{M}$.

Constrast with a topology $\tau \subset \mathcal{P}(X)$, which satisfies

 $(\tau 1) \ \emptyset \in \tau \text{ and } X \in \tau.$

 $(\tau 2)$ If $U_i \in \tau$ (i = 1, ..., n), then $\bigcap_{i=1}^n U_i \in \tau$.

(τ 3) If U_{α} ($\alpha \in \mathcal{I}$) is an arbitrary collection in τ , then $\cup_{\alpha \in \mathcal{I}} U_{\alpha} \in \tau$.

Remarks on σ -algebras:

(a) By $(\sigma 1), X \in \mathcal{M}$, so by $(\sigma 2), \emptyset \in \mathcal{M}$.

- (b) $\bigcap_{i=1}^{\infty} A_i = \left(\bigcup_{i=1}^{\infty} A_i^c \right)^c \Rightarrow$ countable intersections are in \mathcal{M} .
- (c) $A, B \in \mathcal{M} \Rightarrow A \setminus B \in \mathcal{M}$ (since $A \setminus B = A \cap B^c$).

Let (X, τ_X) and (Y, τ_Y) be a topological spaces. Then $f: X \to Y$ is continuous if $f^{-1}(U) \in \tau_X$ for all $U \in \tau_Y$. "Inverse images of open sets are open."

Let (X, \mathcal{M}) be a measure space (i.e., \mathcal{M} is a σ -algebra for the space X). Then $f: X \to Y$ is measurable if $f^{-1}(U) \in \mathcal{M}$ for all $U \in \tau_Y$. "Inverse images of open sets are measurable."

Basic properties of measurable functions.

Proposition 0.1. Let X, Y, Z be topological spaces such that

 $X \xrightarrow{f} Y \xrightarrow{g} Z.$

(1) If f and g are continuous, then $g \circ f$ is continuous.

Proof.
$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(\text{open}) = \text{open.}$$

Date: September 4, 2003.

(2) If f is measurable and g is continuous, then $g \circ f$ is measurable.

Proof.
$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) = f^{-1}(\text{open}) = \text{open.}$$

Theorem 0.2. Let $u: X \to \mathbb{R}$, $v: X \to \mathbb{R}$, and $\Phi: \mathbb{R} \times \mathbb{R} \to Y$. Set $h(x) = \Phi(u(x), v(x)): X \to Y$. If u and v are measurable and Φ is continuous, then $h: X \to Y$ is measurable.

Proof. Define $f: X \to \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ by $f(x) = u(x) \times v(x)$. Then $h = \Phi \dot{f}$. We just need to show (NTS) that f is measurable. Let $R \subset \mathbb{R}^2$ be a rectangle of the form $I_1 \times I_2$ where each $I_i \subset \mathbb{R}(i = 1, 2)$ is an open interval. Then $f^{-1}(R) = u^{-1}(I_1) \cap v^{-1}(I_2)$. Let $x \in f^{-1}(R)$ so that $f(x) \in R$. Then $u(x) \in I_1$ and $v(x) \in I_2$. Since u is measurable, $u^{-1}(I_1) \in \mathcal{M}$, and since v is measurable, $v^{-1}(I_2) \in \mathcal{M}$. Since \mathcal{M} is a σ -algebra, $u^{-1}(I_1) \cap v^{-1}(I_2) \in \mathcal{M}$. Thus $f^{-1}(R) \in \mathcal{M}$ for any rectangle R. Finally, any open set $U = \bigcup_{i=1}^{\infty} R_i$ (rectangle around points with rational coordinates). So $f^{-1}(U) = f^{-1}(\bigcup_{i=1}^{\infty} R_i) = \bigcup_{i=1}^{\infty} f^{-1}(R_i)$. Each term in the union is in \mathcal{M} , so since countable unions of elements in \mathcal{M} are in $\mathcal{M}, f^{-1}(U) \in \mathcal{M}$.

Examples.

- (a) Let $f: X \to \mathbb{C}$ with f = u + iv and u, v real measurable functions. Then f is complex measurable.
- (b) If f = u + iv is complex measurable on X, then u, v, and |f| are real measurable. Take Φ to be $z \mapsto \operatorname{Re} z, z \mapsto \operatorname{Im} z$, and $z \mapsto |z|$, respectively.
- (c) If f, g are real measurable, then so are f + g and fg. (Also holds for complex measurable functions.)
- (d) If $E \subset X$ is measurable (i.e., $E \in \mathcal{M}$), then the characteristic function of E,

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E; \\ 0 & \text{otherwise.} \end{cases}$$

Proposition 0.3. Let \mathcal{F} be any collection of subsets of X. Then there exists a smallest σ -algebra \mathcal{M}^* such that $\mathcal{F} \subset \mathcal{M}^*$. We call \mathcal{M}^* the σ -algebra generated by \mathcal{F} .

Proof. Let Ω = the set of all σ -algebras containing \mathcal{F} . The power set $\mathcal{P}(X)$ = the set of all subsets of X is a σ -algebra, so Ω is not empty. Define $\mathcal{M}^* = \bigcap_{\mathcal{M} \in \Omega} \mathcal{M}$. Since $\mathcal{F} \in \mathcal{M}$ for all $\mathcal{M} \in \Omega$, we have $\mathcal{F} \subset \mathcal{M}^*$. If \mathcal{M} is a σ -algebra containing \mathcal{F} , then $\mathcal{M}^* \subset \mathcal{M}$ by definition. Claim: \mathcal{M}^* is a σ -algebra. If $A \in \mathcal{M}^*$, take $\mathcal{M} \in \Omega$. \mathcal{M} is a σ -algebra and $A \in \mathcal{M}$. Thus, $A^c \in \mathcal{M}$, and so $A^c \in \mathcal{M}^*$ since $\mathcal{M}^* \subset \mathcal{M}$. If $A_i \in \mathcal{M}^*$

 $\mathbf{2}$

for each $i = 1, 2, \ldots$, then $A \in \mathcal{M}$, and so $\cup_i A_i \in \mathcal{M}$. It follows that $\cup_i A_i \in \mathcal{M}^*$.

Borel Sets. By the previous proposition, if X is a topological space, then there exists a smallest σ -algebra \mathcal{B} containing the open sets. Elements of \mathcal{B} are called *Borel sets*.

If $f: (X, \mathcal{B}) \to (Y, \tau)$ and $f^{-1}(U) \in \mathcal{B}$ for all $U \in \tau$, then f is called *Borel measurable*. In particular, continuous functions are Borel measurable.

Terminology:

- F_{σ} ("F-sigma") = countable union of closed sets.
- G_{δ} ("G-delta") = countable intersection of open sets.