18.117 Assignment \# 4

1. Let $\Delta \subseteq \mathbb{R}^{d}$ be a simple m-dimensional convex polytope, and let $\xi \in \mathbb{R}^{d}$. Assume that $\left\langle\xi, v^{\prime}-v\right\rangle \neq 0$ for every pair of adjacent vertices v and v^{\prime} of Δ. For $v \in \operatorname{Vert}(\Delta)$, define

$$
\operatorname{ind}_{\xi} v=\#\left\{v_{i},\left\langle v_{i}-v, \xi\right\rangle<0\right\},
$$

where v_{1}, \ldots, v_{m} are the vertices adjacent to v.
Prove that

$$
b_{k} \equiv \#\left\{v \in \operatorname{Vert}(\Delta), \operatorname{ind}_{\xi} v=k\right\}
$$

is independent of ξ.

Hints for Problem 1:
(a) Let F be a k-dimensional face of Δ. Show that there is a unique vertex $v_{F} \in \operatorname{Vert}(F)$ such that if v_{1}, \ldots, v_{k} are the vertices of F adjacent to v_{F}, then

$$
\begin{equation*}
\left\langle v_{i}-v_{F}, \xi\right\rangle>0 \tag{*}
\end{equation*}
$$

for all $i=1, \ldots, k$.
(b) In particular, if $F=\Delta$, then there is one vertex v_{0} with the property $(*)$. Conclude that $b_{0}=1$.
(c) Let f_{m-1} be the number of $(m-1)$-dimensional faces of Δ. Each such face F has a unique vertex v_{F} with property $(*)$. Show that there are m such faces with $v_{F}=v_{0}$, and show that the number of such faces with $v_{F} \neq v_{0}$ is b_{1}. Conclude that $f_{m-1}=m b_{0}+b_{1}$.
(d) Let f_{m-2} be the number of $(m-2)$-dimensional faces of Δ. Show that

$$
f_{m-2}=\binom{m}{2} b_{0}+\binom{m-1}{1} b_{1}+b_{2}
$$

i. Sub-hint: The first summand counts the number of $(m-2)$-dimensional faces F for which $v_{F}=v_{0}$.
The second summand counts the number of $(m-2)$-dimensional faces F for which $v_{F}=v_{F^{\prime}}$, where F^{\prime} is an $(m-1)$-dimensional face with $v_{F^{\prime}} \neq v_{0}$.
The third summand counts all the other $(m-2)$-dimensional faces.
(e) In general, conclude that

$$
f_{m-k}=\binom{m}{k} b_{0}+\binom{m-1}{k-1} b_{1}+\ldots+b_{k}=\sum_{\ell=0}^{k}\binom{m-\ell}{k-\ell} b_{\ell}
$$

