18.117 Assignment #4

1. Let $\Delta \subseteq \mathbb{R}^d$ be a simple *m*-dimensional convex polytope, and let $\xi \in \mathbb{R}^d$. Assume that $\langle \xi, v' - v \rangle \neq 0$ for every pair of adjacent vertices v and v' of Δ . For $v \in \text{Vert}(\Delta)$, define

$$\operatorname{ind}_{\xi} v = \#\{v_i, \langle v_i - v, \xi \rangle < 0\},\$$

where $v_1, ..., v_m$ are the vertices adjacent to v.

Prove that

$$b_k \equiv \#\{v \in \operatorname{Vert}(\Delta), \operatorname{ind}_{\xi} v = k\}$$

is independent of ξ .

Hints for Problem 1:

(a) Let F be a k-dimensional face of Δ . Show that there is a unique vertex $v_F \in \operatorname{Vert}(F)$ such that if v_1, \ldots, v_k are the vertices of F adjacent to v_F , then

$$\langle v_i - v_F, \xi \rangle > 0, \quad (*)$$

for all i = 1, ..., k.

- (b) In particular, if $F = \Delta$, then there is *one* vertex v_0 with the property (*). Conclude that $b_0 = 1$.
- (c) Let f_{m-1} be the number of (m-1)-dimensional faces of Δ . Each such face F has a unique vertex v_F with property (*). Show that there are m such faces with $v_F = v_0$, and show that the number of such faces with $v_F \neq v_0$ is b_1 . Conclude that $f_{m-1} = mb_0 + b_1$.
- (d) Let f_{m-2} be the number of (m-2)-dimensional faces of Δ . Show that

$$f_{m-2} = \binom{m}{2}b_0 + \binom{m-1}{1}b_1 + b_2$$

i. Sub-hint: The first summand counts the number of (m-2)-dimensional faces F for which $v_F = v_0$.

The second summand counts the number of (m-2)-dimensional faces F for which $v_F = v_{F'}$, where F' is an (m-1)-dimensional face with $v_{F'} \neq v_0$.

The third summand counts all the other (m-2)-dimensional faces.

(e) In general, conclude that

$$f_{m-k} = \binom{m}{k} b_0 + \binom{m-1}{k-1} b_1 + \dots + b_k = \sum_{\ell=0}^k \binom{m-\ell}{k-\ell} b_\ell.$$