MIT OpenCourseWare
http://ocw.mit.edu

18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 7: Linear Transformations

(Text 80-89)

Remarks on Lecture 6

Concerning Definition 13 p. 81, formula (11) shows that the definition does not depend on the choice of z_{1}, z_{2}, z_{3}.

Exercise 2 on page 88 requires a minor correction. For example $w=-z$ is hyperbolic according to definition on page 86, yet when written in the form

$$
\frac{a z+b}{c z+d}
$$

with

$$
a d-b c=1,
$$

we must take

$$
a=-d=i
$$

so

$$
a+d=0
$$

The transformation $w=z$ causes other ambiguities.
Thus we modify the definition a bit.

Definition 1

- S is parabolic if either it is the identity or has exactly one fixed point.
- S is strictly hyperbolic if $k>0$ in (12) but $k \neq 1$.
- S is $\underline{\text { elliptic if }|k|=1}$ in (12) p. 86 but S is not identity.

Then the statement of Exercise 2 holds with hyperbolic replaced by strictly hyperbolic.
(i) the condition for exactly one fixed point for

$$
S z=\frac{\alpha z+\beta}{\gamma z+\delta}
$$

is

$$
(\alpha-\delta)^{2}=-4 \beta \gamma \quad(\text { wrong sign in text })
$$

With the normalization

$$
\alpha \delta-\beta \gamma=1
$$

this amounts to

$$
(\alpha+\delta)^{2}=4
$$

as desired.
(ii) Assume two fixed points are a and b, so

$$
\frac{w-a}{w-b}=k \frac{z-a}{z-b}
$$

which we write as

$$
w=T z=\frac{\alpha z+\beta}{\gamma z+\delta} .
$$

Put

$$
A=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

and define

$$
\operatorname{Tr}^{2}(T)=\frac{(\operatorname{Trace} A)^{2}}{\operatorname{det} A}
$$

By linear algebra,

$$
\operatorname{Trace}\left(B A B^{-1}\right)=\operatorname{Trace}(A)
$$

and

$$
\operatorname{det}\left(B A B^{-1}\right)=\operatorname{det} A
$$

Define

$$
\begin{aligned}
& z_{1}=S z \\
&=\frac{z-a}{z-b} \\
& w_{1}=S w
\end{aligned}=\frac{w-a}{w-b} .
$$

Then

$$
\operatorname{Tr}^{2}(T)=\operatorname{Tr}^{2}\left(S T S^{-1}\right)
$$

Now

$$
w_{1}=S T z=S T S^{-1} z_{1},
$$

SO

$$
w_{1}=k z_{1} .
$$

Then

$$
\operatorname{Tr}^{2}(T)=\operatorname{Tr}^{2}\left(S T S^{-1}\right)=k+\frac{1}{k}+2 .
$$

If T is strictly hyperbolic, we have

$$
k>0, \quad k \neq 1,
$$

so

$$
\operatorname{Tr}^{2}(T)>4,
$$

which under the assumption

$$
\alpha \delta-\beta \gamma=1
$$

amounts to

$$
(\alpha+\delta)^{2}>4
$$

as stated.
Conversely, if

$$
(\alpha+\delta)^{2}>4
$$

then $k>0$. So the transformation

$$
w_{1}=k z_{1}
$$

maps each line through 0 and ∞ into itself. So T maps each circle C_{1} into itself with $k>0$. Thus T is strictly hyperbolic.
(iii) If $|k|=1$, then

$$
w_{1}=e^{i \theta} z_{1}
$$

and we find

$$
\operatorname{Tr}^{2}(T)=\left(2 \cos \frac{\theta}{2}\right)^{2}<4
$$

since the possibility $\theta=0$ is excluded.
Conversely, if

$$
-2<\alpha+\delta<2, \quad \alpha \delta-\beta \gamma=1
$$

we have

$$
\operatorname{Tr}^{2}(T)=(\alpha+\delta)^{2}=k+\frac{1}{k}+2<4 .
$$

Writing

$$
k=r e^{i \theta} \quad(r>0)
$$

this implies

$$
\left(r+\frac{1}{r}\right) \cos \theta+i\left(r-\frac{1}{r}\right) \sin \theta<2
$$

which implies

$$
r=1 \quad \text { or } \quad \theta=0 \quad \text { or } \quad \theta=\pi .
$$

If $r=1$, then $|k|=1$, so T is elliptic.
Since $r+\frac{1}{r} \geq 2$, the possibility $\theta=0$ is ruled out.
Finally if $\theta=\pi$, then $k=-r$, so

$$
(\alpha+\delta)^{2}=-r-\frac{1}{r}+2 .
$$

But $r \geq 0$, so since $\alpha+\delta$ is real, this implies $r=1$, so $k=-1$, and T is thus elliptic.

