MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

# Lecture 5: Exponentials and Trigonometric Functions 

(Text 42-47)

## Remarks on Lecture 5

Since $\cos z$ is even, $\arccos z$ can just as well defined as

$$
\arccos z=-i \log \left(z+\sqrt{z^{2}-1}\right)
$$

This in fact more appropriate because then the derivative is

$$
-\frac{1}{\sqrt{1-z^{2}}},
$$

which is better because then the derivative is $<0$ for $z=0$.
Note that in any case

$$
\cos (\arccos z)=z,
$$

since $z+\sqrt{z^{2}-1}$ and $z-\sqrt{z^{2}-1}$ are reciprocals.

