MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 3: Analytic Functions; Rational Functions

(Text 21-32)

Remarks on Lecture 3

- Formula (14) on p. 32 was proved under the assumption that $R(\infty)=\infty$. On the other hand, if $R(\infty)$ is finite, then (12) holds with $G \equiv 0$. Then we use the previous proof on $R\left(\beta_{j}+\frac{1}{\zeta}\right)$ and we still get the representation (14).
- For theorem 1 on page 29, we have the following stronger version:

Theorem 1 (Stronger version) The smallest convex set which contains all the zeros of $P(z)$ also contains the zeros of $P^{\prime}(z)$.

Proof: Let $\alpha_{1}, \cdots, \alpha_{n}$ be the zeros of P, so

$$
P(z)=a_{n}\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{n}\right) .
$$

Then

$$
\frac{P^{\prime}(z)}{P(z)}=\frac{1}{z-\alpha_{1}}+\cdots+\frac{1}{\alpha_{n}} .
$$

If z_{0} is a zero of $P^{\prime}(z)$ and $z_{0} \neq$ each α_{i}, then this vanishes for $z=z_{0}$; conjugating the equation gives

$$
\frac{z_{0}-\alpha_{1}}{\left|z_{0}-\alpha_{1}\right|^{2}}+\cdots+\frac{z_{0}-\alpha_{n}}{\left|z_{0}-\alpha_{n}\right|^{2}}=0
$$

so

$$
z_{0}=m_{1} \alpha_{1}+\cdots+m_{n} \alpha_{n},
$$

where

$$
m_{i} \geq 0 \text { and } \quad \sum_{i=1}^{n} m_{i}=1
$$

We now only need to prove the following simple result:

Proposition 1 Given $a_{1}, \cdots, a_{n} \in \mathbb{C}$, the set

$$
\begin{equation*}
\left\{\sum_{i=1}^{n} m_{i} a_{i} \mid m_{i} \geq 0, \sum_{i=1}^{n} m_{i}=1\right\} \tag{1}
\end{equation*}
$$

is the intersection C of all convex sets containing all a_{i} (which is called the convex hull of $\left.a_{1}, \cdots, a_{n}\right)$.

Proof: We must show that each point $\sum_{i=1}^{n} a_{i} m_{i}$ in (1) is contained in each convex set containing the a_{i} and thus in C. We may assume it has the form

$$
x=\sum_{i=1}^{p} m_{i} a_{i}
$$

where

$$
m_{i}>0 \text { for } 1 \leq i \leq p
$$

and

$$
m_{j}=0 \text { for } j>p .
$$

We prove $x \in C$ by induction on p. Statement is clear if $p=1$. Put

$$
\lambda=\sum_{i=1}^{p-1} m_{i}
$$

and

$$
a=\sum_{i=1}^{p-1} \frac{m_{1}}{\lambda} a_{i} .
$$

By inductive assumption, $a \in C$. But

$$
x=\sum_{i=1}^{p} m_{i} a_{i}=\lambda a+(1-\lambda) a_{i}
$$

where $0 \leq \lambda \leq 1$. So $x \in C$ as stated. Q.E.D.

Solution to 4 on p. 33

Suppose $R(z)$ is rational and

$$
|R(z)|=1
$$

for $|z|=1$. Then

$$
\left|R\left(e^{i \theta}\right)\right| \equiv 1 \quad \theta \in \mathbb{R}
$$

Let $S(z)$ be the rational functions obtained by conjugating all the coefficients in $R(z)$, then

$$
R\left(e^{i \theta}\right) S\left(e^{-i \theta}\right)=R\left(e^{i \theta}\right) \overline{R\left(e^{i \theta}\right)}=1 .
$$

So

$$
R(z) S\left(\frac{1}{z}\right)=1 \text { on }|z|=1
$$

Clearing denominators we see this relation

$$
R(z) S\left(\frac{1}{z}\right)=1
$$

holds for all $z \in \mathbb{C}$.
Since a polynomial has only finitely many zeroes, let

$$
\alpha_{1}, \cdots, \alpha_{p}
$$

be all the zeroes of $R(z)$ which are not equal to 0 or ∞. Then

$$
\frac{1}{\alpha_{1}}, \cdots, \frac{1}{\alpha_{p}}
$$

are the poles of $S(z)$ which are not equal to 0 or ∞. So

$$
\frac{1}{\bar{\alpha}_{1}}, \cdots, \frac{1}{\bar{\alpha}_{p}}
$$

are the poles of $R(z)$ which are not equal to 0 or ∞ because of the definition of S. Then

$$
R(z)\left(\frac{z-\alpha_{1}}{1-\bar{\alpha}_{1} z} \cdots \frac{z-\alpha_{p}}{1-\bar{\alpha}_{p} z}\right)^{-1}
$$

has no poles or zeros except possibly 0 and ∞. Hence

$$
R(z)=C z^{l} \frac{z-\alpha_{1}}{1-\bar{\alpha}_{1} z} \cdots \frac{z-\alpha_{p}}{1-\bar{\alpha}_{p} z}
$$

where C is constant with $|C|=1, l$ is integer.
Conversely, such R has $|R(z)|=1$ on $|z|=1$.

