MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.112 Functions of a Complex Variable Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 2: Exponential function & Logarithm for a complex argument

(Replacing Text p.10 - 20)

For b > 1, $x \in \mathbb{R}$, we defined in 18.100B,

$$b^x = \sup_{t \in \mathbb{Q}, \ t \le x} b^t$$

(where b^t was easy to define for $t \in \mathbb{Q}$). Then the formula

$$b^{x+y} = b^x b^y$$

was hard to prove directly. We shall obtain another expression for b^x making proof easy.

Let

$$L(x) = \int_1^x \frac{dt}{t}, \ x > 0.$$

Then

$$L(xy) = L(x) + L(y)$$

and

$$L'(x) = \frac{1}{x} > 0.$$

So L(x) has an inverse E(x) satisfying

$$E(L(x)) = x.$$

$$E'(L(x))L'(x) = 1,$$

 \mathbf{SO}

$$E'(L(x)) = x$$

If y = L(x), so x = E(y), we thus have

$$E'(y) = E(y),$$

It is easy to see E(0) = 1, so by uniqueness,

$$E(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + \dots$$
 and $E(1) = e$.

Theorem 1 $b^x = E(xL(b)), \forall x \in \mathbb{R}.$

Proof: Let u = L(x), v = L(y), then

$$E(u+v) = E(L(x) + L(y)) = E(L(xy)) = xy = E(u)E(v),$$

 $E(n) = E(1)^n = e^n,$

and if $t = \frac{n}{m}$,

$$E(t)^m = E(mt) = E(n) = e^n.$$

 \mathbf{SO}

$$E(t) = e^t, \ t \in \mathbb{Q}, \ t > 0.$$

Since

E(t)E(-t) = 1,

 So

 $E(t) = e^t, \ t \in \mathbb{Q}.$

Now

 $b^n = E(nL(b))$

and

$$b^{\frac{1}{m}} = E\left(\frac{1}{m}L(b)\right)$$

since both have same m^{th} power.

$$\left(b^{\frac{1}{m}}\right)^n = b^{\frac{n}{m}} = E\left(\frac{1}{m}L(b)\right)^n = E\left(\frac{n}{m}L(b)\right),$$

 \mathbf{SO}

$$b^t = E(tL(b)), \ t \in \mathbb{Q}.$$

Now for $x \in \mathbb{R}$,

$$b^{x} = \sup_{t \le x, \ t \in \mathbb{Q}} (b^{t}) = \sup_{t \le x, \ t \in \mathbb{Q}} E(tL(b)) = E(xL(b))$$

since E(x) is continuous.

Corollary 1 For any $b > 0, x, y \in \mathbb{R}$, we have $b^{x+y} = b^x b^y$.

Q.E.D.

In particular $e^x = E(x)$, so we have the amazing formula

$$\left(1+1+\frac{1}{2!}+\dots+\frac{1}{n!}+\dots\right)^x = 1+x+\frac{x^2}{2!}+\dots+\frac{x^n}{n!}+\dots$$

The formula for e^x suggests defining e^z for $z \in \mathbb{C}$ by

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \dots + \frac{z^{n}}{n!} + \dots$$

the convergence being obvious.

Proposition 1 $e^{z+w} = e^z e^w$ for all $z, w \in \mathbb{C}$.

Proof: Look at the functions

$$f(t) = e^{tz+w}, \ g(t) = e^{tz}e^{w}$$

for $t \in \mathbb{R}$. Differentiating the series for e^{tz+w} and e^{tz} with respect to t, term-by-term, we see that

$$\frac{df}{dt} = zf(t), \ \frac{dg}{dt} = zg(t)$$

and

$$f(0) = e^w, \ g(0) = e^w.$$

By the uniqueness for these equations, we deduce $f \equiv g$. Thus f(1) = g(1). Q.E.D.

Note that if $t \in \mathbb{R}$,

$$e^{it}e^{-it} = 1$$
, and $(e^{it})^{-1} = e^{-it}$.

Thus

$$|e^{it}| = 1.$$

So e^{it} lies on the unit circle.

Put

$$\cos t = \frac{e^{it} + e^{-it}}{2} = 1 - \frac{t^2}{2} + \cdots,$$
$$\sin t = \frac{e^{it} - e^{-it}}{2} = t - \frac{t^3}{3!} + \cdots.$$

Thus we verify the old geometric meaning $e^{it} = \cos t + i \sin t$. Note that the $e^{it}(t \in \mathbb{R})$ fill up the unit circle. In fact by the intermediate value theorem, $\{\cos t \mid t \in \mathbb{R}\}$ fills up the interval [-1, 1], so $e^{it} = \cos t + i \sin t$ is for a suitable t an arbitrary point on the circle.

Note that $z \mapsto e^z$ takes all values $w \in \mathbb{C}$ except 0. For this note

$$e^z = e^x \cdot e^{iy}, \quad z = x + iy.$$

 $e^x = |w|$

Choose x with

and then y so that

$$e^{iy} = \frac{w}{|w|},$$

then $e^z = w$.

which gives a geometric interpretation of the multiplication.

From this we also have the following very useful formula

 $(\cos \varphi + i \sin \varphi)^n = e^{in\varphi} = \cos n\varphi + i \sin n\varphi.$ Thus

Theorem 2 The roots of $z^n = 1$ are $1, \omega, \omega^2, \cdots, \omega^{n-1}$, where $\omega = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$.

2π/n

Fig. 2-2

Geometric meanings for some useful complex number sets:

$$\begin{aligned} |z - a| &= r & \longleftrightarrow & \text{circle} \\ |z - a| + |z - b| &= r, \ (|a - b| < r) & \longleftrightarrow & \text{ellipse} \\ |z - a| &= |z - b| & \longleftrightarrow & \text{perpendicular bisector} \\ \{z \mid z = a + tb, t \in \mathbb{R}\} & \longleftrightarrow & \text{line} \\ \{z \mid \text{Im}z < 0\} & \longleftrightarrow & \text{lower half plane} \\ \{z \mid \text{Im}\left(\frac{z - a}{b}\right) < 0\} & \longleftrightarrow & \text{general half plane} \end{aligned}$$

For x real, $x \mapsto e^x$ has an inverse. This is **NOT** the case for $z \mapsto e^z$, because

$$e^{z+2\pi i} = e^z,$$

thus e^z does not have an inverse. Moreover, for $w \neq 0$,

$$e^z = w$$

has infinitely many solutions:

$$e^x = |w|, \ e^{iy} = \frac{w}{|w|} \implies x = \log|w|, \ y = \arg(w)$$

 So

 $\log w = \log |w| + i\arg(w)$

takes infinitely many values, thus not a function.

Define

$$\operatorname{Arg}(w) \triangleq \operatorname{principal argument} of w \text{ in interval } -\pi < \operatorname{Arg}(w) < \pi$$

and define the principal value of logarithm to be

$$\operatorname{Log}(w) \triangleq \log |w| + i\operatorname{Arg}(w),$$

which is defined in slit plane (removing the negative real axis).

We still have

$$\log z_1 z_2 = \log z_1 + \log z_2$$

in the sense that both sides take the same infinitely many values. We can be more specific:

Theorem 3 In slit plane,

$$Log(z_1z_2) = Log(z_1) + Log(z_2) + n \cdot 2\pi i, \quad n = 0 \text{ or } \pm 1$$

and n = 0 if

$$-\pi < \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) < \pi.$$

In particular, n = 0 if $z_1 > 0$.

Proof: In fact, $\operatorname{Arg}(z_1)$, $\operatorname{Arg}(z_2)$ and $\operatorname{Arg}(z_1z_2)$ are all in $(-\pi, \pi)$, thus

$$-\pi - \pi - \pi < \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) - \operatorname{Arg}(z_1 z_2) < \pi + \pi + \pi,$$

but

$$\operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) - \operatorname{Arg}(z_1 z_2) = n \cdot 2\pi i,$$

thus

$$|n| \le 1.$$

If

$$\left|\operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)\right| < \pi,$$

since

$$|\operatorname{Arg}(z_1 z_2)| < \pi,$$

they must agree since difference is a multiple of 2π . Q.E.D.