MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 2: Exponential function \& Logarithm for a complex argument

(Replacing Text p. 10-20)

For $b>1, x \in \mathbb{R}$, we defined in 18.100B,

$$
b^{x}=\sup _{t \in \mathbb{Q}, t \leq x} b^{t}
$$

(where b^{t} was easy to define for $t \in \mathbb{Q}$). Then the formula

$$
b^{x+y}=b^{x} b^{y}
$$

was hard to prove directly. We shall obtain another expression for b^{x} making proof easy.

Let

$$
L(x)=\int_{1}^{x} \frac{d t}{t}, x>0
$$

Then

$$
L(x y)=L(x)+L(y)
$$

and

$$
L^{\prime}(x)=\frac{1}{x}>0 .
$$

So $L(x)$ has an inverse $E(x)$ satisfying

$$
E(L(x))=x
$$

By 18.100B,

$$
E^{\prime}(L(x)) L^{\prime}(x)=1
$$

so

$$
E^{\prime}(L(x))=x
$$

If $y=L(x)$, so $x=E(y)$, we thus have

$$
E^{\prime}(y)=E(y),
$$

It is easy to see $E(0)=1$, so by uniqueness,

$$
E(x)=1+x+\frac{x^{2}}{2}+\cdots+\frac{x^{n}}{n!}+\cdots \quad \text { and } \quad E(1)=e
$$

Theorem $1 b^{x}=E(x L(b)), \forall x \in \mathbb{R}$.
Proof: Let $u=L(x), v=L(y)$, then

$$
\begin{gathered}
E(u+v)=E(L(x)+L(y))=E(L(x y))=x y=E(u) E(v), \\
E(n)=E(1)^{n}=e^{n},
\end{gathered}
$$

and if $t=\frac{n}{m}$,

$$
E(t)^{m}=E(m t)=E(n)=e^{n} .
$$

so

$$
E(t)=e^{t}, \quad t \in \mathbb{Q}, t>0
$$

Since

$$
E(t) E(-t)=1,
$$

So

$$
E(t)=e^{t}, \quad t \in \mathbb{Q} .
$$

Now

$$
b^{n}=E(n L(b))
$$

and

$$
b^{\frac{1}{m}}=E\left(\frac{1}{m} L(b)\right)
$$

since both have same $m^{\text {th }}$ power.

$$
\left(b^{\frac{1}{m}}\right)^{n}=b^{\frac{n}{m}}=E\left(\frac{1}{m} L(b)\right)^{n}=E\left(\frac{n}{m} L(b)\right),
$$

so

$$
b^{t}=E(t L(b)), t \in \mathbb{Q}
$$

Now for $x \in \mathbb{R}$,

$$
b^{x}=\sup _{t \leq x, t \in \mathbb{Q}}\left(b^{t}\right)=\sup _{t \leq x, t \in \mathbb{Q}} E(t L(b))=E(x L(b))
$$

since $E(x)$ is continuous.
Q.E.D.

Corollary 1 For any $b>0, x, y \in \mathbb{R}$, we have $b^{x+y}=b^{x} b^{y}$.

In particular $e^{x}=E(x)$, so we have the amazing formula

$$
\left(1+1+\frac{1}{2!}+\cdots+\frac{1}{n!}+\cdots\right)^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

The formula for e^{x} suggests defining e^{z} for $z \in \mathbb{C}$ by

$$
e^{z}=1+z+\frac{z^{2}}{2!}+\cdots+\frac{z^{n}}{n!}+\cdots
$$

the convergence being obvious.
Proposition $1 e^{z+w}=e^{z} e^{w}$ for all $z, w \in \mathbb{C}$.
Proof: Look at the functions

$$
f(t)=e^{t z+w}, g(t)=e^{t z} e^{w}
$$

for $t \in \mathbb{R}$. Differentiating the series for $e^{t z+w}$ and $e^{t z}$ with respect to t, term-by-term, we see that

$$
\frac{d f}{d t}=z f(t), \frac{d g}{d t}=z g(t)
$$

and

$$
f(0)=e^{w}, g(0)=e^{w}
$$

By the uniqueness for these equations, we deduce $f \equiv g$. Thus $f(1)=g(1)$. Q.E.D.
Note that if $t \in \mathbb{R}$,

$$
e^{i t} e^{-i t}=1, \quad \operatorname{and}\left(e^{i t}\right)^{-1}=e^{-i t} .
$$

Thus

$$
\left|e^{i t}\right|=1
$$

So $e^{i t}$ lies on the unit circle.
Put

$$
\begin{aligned}
& \cos t=\frac{e^{i t}+e^{-i t}}{2}=1-\frac{t^{2}}{2}+\cdots \\
& \sin t=\frac{e^{i t}-e^{-i t}}{2}=t-\frac{t^{3}}{3!}+\cdots
\end{aligned}
$$

Thus we verify the old geometric meaning $e^{i t}=\cos t+i \sin t$. Note that the $e^{i t}(t \in \mathbb{R})$ fill up the unit circle. In fact by the intermediate value theorem, $\{\cos t \mid t \in \mathbb{R}\}$ fills up the interval $[-1,1]$, so $e^{i t}=\cos t+i \sin t$ is for a suitable t an arbitrary point on the circle.

Note that $z \mapsto e^{z}$ takes all values $w \in \mathbb{C}$ except 0 . For this note

$$
e^{z}=e^{x} \cdot e^{i y}, \quad z=x+i y
$$

Choose x with

$$
e^{x}=|w|
$$

and then y so that

$$
e^{i y}=\frac{w}{|w|},
$$

then $e^{z}=w$.

Fig.2-1

Fig. 2-2

If

$$
z=|z| e^{i \varphi}, \quad w=|w| e^{i \psi}
$$

then
$z w=|z||w| e^{i(\varphi+\psi)}$

$$
=|z||w|(\cos (\varphi+\psi)+i \sin (\varphi+\psi))
$$

which gives a geometric interpretation of the multiplication.

From this we also have the following very useful formula
$(\cos \varphi+i \sin \varphi)^{n}=e^{i n \varphi}=\cos n \varphi+i \sin n \varphi$. Thus

Theorem 2 The roots of $z^{n}=1$ are $1, \omega, \omega^{2}, \cdots, \omega^{n-1}$, where

$$
\omega=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}
$$

Geometric meanings for some useful complex number sets:

$$
\begin{aligned}
&|z-a|=r \longleftrightarrow \\
& \text { circle } \\
&|z-a|+|z-b|=r,(|a-b|<r) \longleftrightarrow \\
&|z-a|=|z-b| \longleftrightarrow \\
& \text { ellipse } \\
&\{z \mid z=a+t b, t \in \mathbb{R}\} \longleftrightarrow \\
&\{z \mid \operatorname{Im} z<0\} \longleftrightarrow \\
& \text { perpendicular bisector } \\
&\left\{z \left\lvert\, \operatorname{Im}\left(\frac{z-a}{b}\right)<0\right.\right\} \longleftrightarrow \\
& \text { lower half plane } \\
& \text { general half plane }
\end{aligned}
$$

For x real, $x \mapsto e^{x}$ has an inverse. This is NOT the case for $z \mapsto e^{z}$, because

$$
e^{z+2 \pi i}=e^{z},
$$

thus e^{z} does not have an inverse. Moreover, for $w \neq 0$,

$$
e^{z}=w
$$

has infinitely many solutions:

$$
e^{x}=|w|, \quad e^{i y}=\frac{w}{|w|} \quad \Longrightarrow \quad x=\log |w|, \quad y=\arg (w)
$$

So

$$
\log w=\log |w|+i \arg (w)
$$

takes infinitely many values, thus not a function.
Define

$$
\operatorname{Arg}(w) \triangleq \operatorname{principal} \operatorname{argument} \text { of } w \text { in interval }-\pi<\operatorname{Arg}(w)<\pi
$$

and define the principal value of logarithm to be

$$
\log (w) \triangleq \log |w|+i \operatorname{Arg}(w)
$$

which is defined in slit plane (removing the negative real axis).
We still have

$$
\log z_{1} z_{2}=\log z_{1}+\log z_{2}
$$

in the sense that both sides take the same infinitely many values. We can be more specific:

Theorem 3 In slit plane,

$$
\log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right)+\log \left(z_{2}\right)+n \cdot 2 \pi i, \quad n=0 \text { or } \pm 1
$$

and $n=0$ if

$$
-\pi<\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)<\pi
$$

In particular, $n=0$ if $z_{1}>0$.
Proof: In fact, $\operatorname{Arg}\left(z_{1}\right), \operatorname{Arg}\left(z_{2}\right)$ and $\operatorname{Arg}\left(z_{1} z_{2}\right)$ are all in $(-\pi, \pi)$, thus

$$
-\pi-\pi-\pi<\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)-\operatorname{Arg}\left(z_{1} z_{2}\right)<\pi+\pi+\pi
$$

but

$$
\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)-\operatorname{Arg}\left(z_{1} z_{2}\right)=n \cdot 2 \pi i
$$

thus

$$
|n| \leq 1
$$

If

$$
\left|\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)\right|<\pi
$$

since

$$
\left|\operatorname{Arg}\left(z_{1} z_{2}\right)\right|<\pi
$$

they must agree since difference is a multiple of 2π.
Q.E.D.

