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Lecture 2: Exponential function & Logarithm 
for a complex argument 

(Replacing Text p.10 - 20) 

For b > 1, x ∈ R, we defined in 18.100B,


bx = sup bt


t∈Q, t≤x 

(where bt was easy to define for t ∈ Q). Then the formula 

bx+y bxby= 

was hard to prove directly. We shall obtain another expression for bx making proof 
easy. 

Let 
� x dt 

L(x) = , x > 0. 
t1 

Then 
L(xy) = L(x) + L(y) 

and 
1 

L ′ (x) = > 0. 
x 

So L(x) has an inverse E(x) satisfying 

E(L(x)) = x. 

By 18.100B, 
E ′ (L(x))L ′ (x) = 1, 

so 
E ′ (L(x)) = x. 

If y = L(x), so x = E(y), we thus have 

E ′ (y) = E(y), 
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It is easy to see E(0) = 1, so by uniqueness,


2 nx x
E(x) = 1 + x + + · · · + + · · · and E(1) = e. 

2 n! 

Theorem 1 bx = E(xL(b)), ∀x ∈ R. 

Proof: Let u = L(x), v = L(y), then 

E(u + v) = E(L(x) + L(y)) = E(L(xy)) = xy = E(u)E(v), 

E(n) = E(1)n = e n , 

and if t = n ,
m 

E(t)m = E(mt) = E(n) = e n . 

so 
E(t) = e t , t ∈ Q, t > 0. 

Since 
E(t)E(−t) = 1, 

So 
E(t) = e t , t ∈ Q. 

Now 
bn = E(nL(b)) 

and 
� � 

1 1 
mb = E L(b) 

m 

since both have same mth power. 

� �n 
� �n 

� � 

1 n 1 n 
m mb = b = E L(b) = E L(b) , 

m m 

so 
bt = E(tL(b)), t ∈ Q. 

Now for x ∈ R, 

bx = sup (bt) = sup E(tL(b)) = E(xL(b)) 
t≤x, t∈Q t≤x, t∈Q 

since E(x) is continuous. Q.E.D. 

Corollary 1 For any b > 0, x, y ∈ R, we have bx+y = bxby. 
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In particular ex = E(x), so we have the amazing formula 

� �x 21 1 x xn 

1 + 1 + + · · · + + · · · = 1 + x + + · · · + + · · · . 
2! n! 2! n! 

The formula for ex suggests defining ez for z ∈ C by 

2 nz z
e z = 1 + z + + · · · + + · · · . 

2! n! 

the convergence being obvious. 

Proposition 1 ez+w = ezew for all z, w ∈ C. 

Proof: Look at the functions 

f(t) = e tz+w , g(t) = e tz e w 

for t ∈ R. Differentiating the series for etz+w and etz with respect to t, term-by-term, 
we see that 

df dg 
= zf(t), = zg(t)

dt dt 
and 

f(0) = e w , g(0) = e w . 

By the uniqueness for these equations, we deduce f ≡ g. Thus f(1) = g(1). Q.E.D. 

Note that if t ∈ R, 

e it e −it = 1, and(e it)−1 = e −it . 

Thus 
|e it| = 1. 

So eit lies on the unit circle. 

Put 
eit + e−it t2


cos t = = 1− + · · · ,

2 2 

eit − e−it t3


sin t = = t − + · · · .

2 3! 

Thus we verify the old geometric meaning eit = cos t+i sin t. Note that the eit(t ∈ R) 
fill up the unit circle. In fact by the intermediate value theorem, {cos t | t ∈ R} fills 
up the interval [−1, 1], so e it = cos t + i sin t is for a suitable t an arbitrary point on 
the circle. 
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a

� � 

Note that z 7→ ez takes all values w ∈ C except 0. For this note 

e z = e x · eiy , z = x + iy. 

Choose x with 
e x = |w| 

and then y so that 
iy w 
e = ,

|w|

then ez = w. 

If 
z iϕ iψ z = |z|e , w = |w|e , 

w then 
a 

zw = |z||w|e i(ϕ+ψ) 

Fig.2-1 = |z||w|(cos (ϕ + ψ) + i sin (ϕ + ψ)), 

which gives a geometric interpretation 

2 /n 

of the multiplication. 

From this we also have the following 
very useful formula 

(cosϕ+ i sinϕ)n = e inϕ = cosnϕ+ i sinnϕ. 

Thus 
Fig. 2-2 

nTheorem 2 The roots of z = 1 are 1, ω, ω2 , · · · , ωn−1 , where 
2π 2π 

ω = cos + i sin . 
n n 

Geometric meanings for some useful complex number sets: 

|z − a| = r ←→ circle 

|z − a| + |z − b| = r, (|a − b| < r) ←→ ellipse 

|z − a| = |z − b| ←→ perpendicular bisector 

{z | z = a + tb, t ∈ R} ←→ line 

{z | Imz < 0} ←→ lower half plane 

z − a 
{z | Im < 0} ←→ general half plane 

b 
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For x real, x 7→ ex has an inverse. This is NOT the case for z 7→ ez, because 

z+2πi z e = e , 

thus ez does not have an inverse. Moreover, for w 6 0, = 

z e = w 

has infinitely many solutions: 

e x = |w|, eiy = 
w 

=⇒ x = log |w|, y = arg(w). 
|w| 

So 
logw = log |w| + iarg(w) 

takes infinitely many values, thus not a function. 

Define 

Arg(w) � principal argument of w in interval − π < Arg(w) < π 

and define the principal value of logarithm to be 

Log(w) � log |w| + iArg(w), 

which is defined in slit plane (removing the negative real axis). 

We still have 
log z1z2 = log z1 + log z2 

in the sense that both sides take the same infinitely many values. We can be more 
specific: 

Theorem 3 In slit plane, 

Log(z1z2) = Log(z1) + Log(z2) + n · 2πi, n = 0 or ± 1 

and n = 0 if 
−π < Arg(z1) + Arg(z2) < π. 

In particular, n = 0 if z1 > 0. 

Proof: In fact, Arg(z1), Arg(z2) and Arg(z1z2) are all in (−π, π), thus 

−π − π − π < Arg(z1) + Arg(z2)− Arg(z1z2) < π + π + π, 

but 
Arg(z1) + Arg(z2)− Arg(z1z2) = n · 2πi, 
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thus

|n| ≤ 1. 

If 
|Arg(z1) + Arg(z2)| < π, 

since 
|Arg(z1z2)| < π, 

they must agree since difference is a multiple of 2π. Q.E.D. 
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