MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.112 Functions of a Complex Variable Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 19: Normal Families

(Replacing Text 219-227)

Theorem 1 Let $\Omega \subset \mathbb{C}$ be a region, \mathcal{F} a family of holomorphic functions on Ω such that for each compact $E \subset \Omega$, \mathcal{F} is uniformly bounded on E. Then \mathcal{F} has a subsequence converging uniformly on each compact subset of Ω .

First we prove that on each compact subset $E \subset \Omega$, the family \mathcal{F} is equicontinuous. This means, given $\epsilon > 0$ there exists a $\delta > 0$ such that for all $f \in \mathcal{F}$,

$$|f(z') - f(z'')| < \epsilon$$
 if $|z' - z''| < \delta, \ z', z'' \in E.$ (1)

The distance function $x \to d(x, \mathbb{C} - \Omega)$ is continuous and has a minimum > 0 on the compact set E. Let d > 0 be such that (D denoting disk) $F = \bigcup_{x \in E} D(x, 2d)$ has closure $\overline{F} \subset \Omega$.

Let $z', z'' \in E$ satisfy

$$|z' - z''| < d$$

and let γ denote the circle

 $\gamma : |z - z'| = 2d.$

Then $\gamma \subset \overline{F}$ and z' and z'' are both inside γ . Also $|\zeta - z'| = 2d$, $|\zeta - z''| \ge d$ for $\zeta \in \gamma$.

By Cauchy's formula for $f \in \mathcal{F}$,

$$f(z') - f(z'') = \frac{z' - z''}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z')(\zeta - z'')} d\zeta,$$

so if $M(\bar{F})$ is the maximum of f on \bar{F}

$$|f(z') - f(z'')| \le |z' - z''| \frac{M(F)}{d}.$$

Hence (1) follows.

To conclude the proof of Theorem 1 choose any sequence (z_j) which is dense in Ω . Let f_m be any sequence in \mathcal{F} . The sequence $f_m(z_1)$ is bounded so f_m has a subsequence $f_{m,1}$ converging at z_1 . Form this take a subsequence $f_{m,2}$ which converges at z_2 . Continuing we see that the subsequence $f_{m,m}$ converges at each z_j .

By the first part of the proof, \mathcal{F} is equicontinuous on the compact set \overline{F} . Given $\epsilon > 0$ there exists a $\delta < d$ such that (1) holds for all $z', z'' \in \overline{F}, f \in \mathcal{F}$. If $z \in E$ the disk $D(z, \delta)$ contains some z_j so $D(z_j, \delta)$ contains z.

By the compactness of E,

$$E \subset \bigcup_{i=1}^p D(z_i, \delta)$$

for some z_1, \dots, z_p . Thus given $z \in E$ there exists a $z_i = z_i(z)$ such that $|z - z_i(z)| < \delta$. Then $z_i(z) \in \overline{F}$. Thus by (1) for \overline{F} ,

$$|f(z) - f(z_i(z))| < \epsilon. \qquad f \in \mathcal{F}.$$
(2)

There exists N > 0 such that

$$|f_{r,r}(z_i) - f_{s,s}(z_i)| < \epsilon \qquad 1 \le i \le p, \ r, s > N.$$
(3)

Given $z \in E$ we have with $z_i = z_i(z)$

$$|f_{r,r}(z) - f_{s,s}(z)| \le |f_{r,r}(z) - f_{r,r}(z_i)| + |f_{r,r}(z_i) - f_{s,s}(z_i)| + |f_{s,s}(z_i) - f_{s,s}(z)| \le 3\epsilon \text{ by } (2) \text{ and } (3).$$

The proves the stated uniform convergence on E.

<u>Remark</u>: In the text, p. 223, it is erroneously assumed (and used) that $\zeta_k \in E$. This error occurs in many other texts.