MIT OpenCourseWare
http://ocw.mit.edu

18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 18: Infinite Products

(Text 191-200)

Remarks on Lecture 18

Problem 1 on p.197: Suppose that $a_{n} \rightarrow \infty$ (all different, a condition missing in text) and A_{n} arbitrary complex numbers. Show that there exists an entire function $f(z)$ which satisfies $f\left(a_{n}\right)=A_{n}$.
Proof: (A simpler alternative to the hint in text). Let $g(z)$ be an analytic function with simple zeros at the a_{n}. By the Mittag-Leffler theorem, there exists a meromorphic function h on \mathbb{C} with poles exactly at the points a_{n} with the corresponding singular part

$$
\frac{A_{n} / b_{n}}{z-a_{n}}, \quad g(z)=\left(z-a_{n}\right) k(z), k\left(a_{n}\right)=b_{n} \neq 0
$$

Then

$$
f(z)=g(z) h(z)
$$

has the desired property.

Q.E.D.

$\underline{\text { Remarks on the formula for } \pi \cot \pi z \text { (line } 8 \mathrm{p} .197 \text {) }}$

Since the product formula for $\sin \pi z$ has infinitely many factors taking the logarithmic derivative requires justification. Generally, write

$$
f(z)=\prod_{1}^{\infty} f_{n}(z)=\lim _{N \rightarrow \infty} \prod_{1}^{N} f_{n}(z)=\lim _{N \rightarrow \infty} g_{N}(z)
$$

the convergence being uniform on compacts.
By Theorem 1,

$$
f^{\prime}(z)=\lim _{N \rightarrow \infty} g_{N}^{\prime}(z)
$$

So

$$
\frac{f^{\prime}(z)}{f(z)}=\lim _{N \rightarrow \infty} \frac{g_{N}^{\prime}(z)}{g_{N}(z)} .
$$

Here $g_{N}^{\prime}(z) / g_{N}(z)$ is given by the rule for differentiating a product.
This remark justifies to proof of (27) as well.
In the text the Gamma function is defined by means of the product formula (29) in $\S 2.4$ and the integral formula (42) derived by an interesting residue calculus due to Lindelöf. Here we go a shorter way and derive the product formula from the definition in terms of the integral formula.

The Gamma function can be defined by

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t \quad \operatorname{Re} z>0
$$

Writing

$$
f_{n}(z)=\int_{0}^{n} t^{-z-1} e^{-t} d t
$$

f_{n} is holomorphic and

$$
\left|\Gamma(z)-f_{n}(z)\right| \leq\left|\int_{n}^{\infty} t^{z-1} e^{-t} d t\right| \leq \int_{n}^{\infty} t^{\operatorname{Re} z-1} e^{-t} d t
$$

which $\rightarrow 0$ uniformly in each half plane $\operatorname{Re} z>\delta(\delta>0)$. Thus $\Gamma(z)$ is holomorphic in $\operatorname{Re} z>0$. Here are some of its properties
(i) $\Gamma(z+1)=z \Gamma(z)$.

This follows by integration by parts.
(ii) $\Gamma(z)$ extends to a meromorphic function on \mathbb{C} with simple poles at $z=0,-1,-2, \ldots$. The function

$$
H(z)=\frac{\Gamma(z+1)}{z}
$$

is meromorphic in $\operatorname{Re} z>-1$ with a pole at $z=0$. Since

$$
\lim _{z \rightarrow 0} z H(z) \neq 0
$$

the pole is simple. The residue is $\Gamma(1)=1$. Also $H(z)=\Gamma(z)$ for $\operatorname{Re} z>0$. Thus $\Gamma(z)$ is meromorphic in $\operatorname{Re} z>-1$ with simple pole at $z=0$. Statement (ii) follows by repetition.
(iii) For $x>0, y>0$

$$
\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

Extend to $\operatorname{Re} z>0$, $\operatorname{Re} w>0 \int_{0}^{t} t^{z-1}(1-t)^{w-1} d t=\frac{\Gamma(z) \Gamma(w)}{\Gamma / 2+w}$
Proof:

$$
\Gamma(x) \Gamma(y)=\int_{0}^{\infty} t^{x-1} e^{-t} d t \int_{0}^{\infty} s^{y-1} e^{-s} d s
$$

Put $s=t v$. Since integrands are positive, integrals can be interchanged. We get

$$
\begin{align*}
\Gamma(x) \Gamma(y) & =\int_{0}^{\infty} t^{x-1} e^{-t} d t \int_{0}^{\infty} t^{y} v^{y-1} e^{-t v} d v \\
& =\int_{0}^{\infty} v^{y-1} d v \int_{0}^{\infty} t^{x+y-1} e^{-(v+1) t} d t \quad t=\frac{u}{1+v} \\
& =\int_{0}^{\infty} v^{y-1} d v \int_{0}^{\infty} u^{x+y-1} e^{-u}(1+v)^{-x-y} d u \\
& =\Gamma(x+y) \int_{0}^{\infty} \frac{v^{y-1}}{(1+v)^{x+y}} d v=\Gamma(x+y) \int_{0}^{1} s^{x-1}(1-s)^{y-1} d s \tag{1}
\end{align*}
$$

the last expression coming from $v=s^{-1}(1-s)$. This proves (iii), and it extends to $\operatorname{Re} z>0, \operatorname{Re} w>0$.
(iv) $\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z}$

From (1) we obtain

$$
\Gamma(x) \Gamma(1-x)=\int_{0}^{\infty} \frac{v^{-x}}{1+v} d v
$$

which evaluates to $\pi / \sin (\pi x)$ by the method of Exercise 3(g) p. 161, done in Lecture 15 . This proves (iv) by meromorphic continuation.

Since the poles of $\Gamma(z)$ are canceled by zeros of $\sin \pi z, \Gamma(1-z)$ is never 0 . By (iii) we have for $0<h<\frac{x}{2} \quad z=x+i y$

$$
\begin{aligned}
\frac{\Gamma(z-h) \Gamma(h)}{\Gamma(z)} & =\int_{0}^{1}(1-t)^{z-h-1} t^{h-1} d t \\
& =\frac{1}{h}+\int_{0}^{1}\left[(1-t)^{z-h-1}-1\right] t^{h-1} d t
\end{aligned}
$$

In the integral we use the dominated convergence theorem to justify letting $h \rightarrow 0$ under the integral sign. In the interval $\left[\frac{1}{2}, 1\right]$ there is no problem bounding the integrand uniformly for $h<\frac{x}{2}$. On the interval $\left[0, \frac{1}{2}\right]$ we have (with $\alpha=z-h-1$)

$$
\left|\left((1-t)^{\alpha}-1\right) t^{h-1}\right| \leq\left|\frac{(1-t)^{\alpha}-1}{t}\right|
$$

and by l'Hospital's rule this has limit $|\alpha|=|z-h-1| \leq|z|+2$ so again the integrand is bounded. Thus we let $h \rightarrow 0$ and obtain

$$
\frac{\Gamma(z-h) \Gamma(h)}{\Gamma(z)}=\frac{1}{h}+\int_{0}^{1}\left[(1-t)^{z-1}-1\right] t^{-1} d t+o(1) \text { as } h \rightarrow 0 .
$$

The left hand side is using Taylor for $h \rightarrow \Gamma(z-h)$ and Laurent for $h \rightarrow \Gamma(h)$ both at $h=0$

$$
\frac{1}{\Gamma(z)}\left(\Gamma(z)-h \Gamma^{\prime}(z)+\cdots\right)\left\{\frac{1}{h}+A+B h \cdots\right\}
$$

where $\}$ is the Laurent series for $\Gamma(h)$ with center $h=0$. Equating the constant terms on left hand side and right hand side we get

$$
\frac{\Gamma^{\prime}(z)}{\Gamma(z)}=\int_{0}^{1}(1-(1-t))^{z-1} t^{-1} d t-A \quad x>0
$$

Writing $t^{-1}=\sum_{0}^{\infty}(1-t)^{n}$ the expression is

$$
\int_{0}^{1} \sum_{0}\left[(1-t)^{n}-(1-t)^{n+z-1}\right] d t-A
$$

and since expression in [] equals $\frac{(1-t)^{n}\left(1-(1-t)^{z-1}\right)}{t} t$ which is bounded by $(1-t)^{n} K t$, with integral $K /(n+1)(n+2)$ we can exchange \int and \sum_{n} by the dominated convergence theorem. Thus our expression equals

$$
\begin{aligned}
\sum_{0} & \int_{0}^{1}\left[(1-t)^{n}-(1-t)^{n+z-1}\right] d t-A \\
& =\sum_{0}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+z}\right)-A=1-\frac{1}{z}+\sum_{1}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+z}\right)-A \\
& =\sum_{1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)-\frac{1}{z}+\sum_{1}^{\infty}\left(\frac{1}{n+1}-\frac{1}{n+z}\right)-A \\
& =-\frac{1}{z}+\sum_{1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+z}\right)-A
\end{aligned}
$$

so

$$
=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}+\frac{1}{z}=\sum_{1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+z}\right)-A
$$

Having justified taking logarithmic derivative of an infinite product this gives

$$
\frac{1}{\Gamma(z)}=z e^{C z} \prod_{1}^{\infty}\left(1+\frac{z}{n}\right) e^{-\frac{z}{n}} \quad C=\mathrm{const}
$$

Putting $z=1$ we have

$$
1=e^{C} \prod_{1}^{\infty}\left(1+\frac{1}{n}\right) e^{-\frac{1}{n}}
$$

so

$$
1=e^{C} \lim _{N \rightarrow \infty}\left((N+1) e^{-\left(1+\frac{1}{2}+\cdots \frac{1}{N}\right)}\right)
$$

so

$$
0=C+\lim _{N \rightarrow \infty}\left(\log (N+1)-1-\frac{1}{2}-\cdots-\frac{1}{N}\right)=C-\gamma
$$

so
$C=$ the Euler constant γ.

