MIT OpenCourseWare
http://ocw.mit.edu

18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 17: Mittag-Leffer's Theorem

(Text 187-190)

Theorem 1 (Mittag-Leffer's Theorem) Let $\left\{b_{\nu}\right\}$ be a sequence in \mathbb{C} such that

$$
\lim _{\nu \rightarrow \infty} b_{\nu}=\infty,
$$

and $P_{\nu}(\zeta)$ polynomials without constant term. Then there exist functions f meromorphic in \mathbb{C} with poles at just the points b_{ν} and corresponding singular parts

$$
P_{\nu}\left(\frac{1}{z-b_{\nu}}\right) .
$$

The most general $f(z)$ of this kind can be written

$$
\begin{equation*}
f(z)=g(z)+\sum_{\nu}\left[P_{\nu}\left(\frac{1}{z-b_{\nu}}\right)-p_{\nu}(z)\right] \tag{1}
\end{equation*}
$$

where g is holomorphic in z and the p_{ν} are polynomials.
Proof: We may assume all $b_{\nu} \neq 0$. Consider the Taylor series for $P_{\nu}\left(\frac{1}{z-b_{\nu}}\right)$ around $z=0$. It is analytic for $|z|<\left|b_{\nu}\right|$. Let $p_{\nu}(z)$ be the partial sum up to $z^{n_{\nu}}$ (n_{ν} to be determined later). Consider the finite Taylor series of

$$
\varphi(z)=P_{\nu}\left(\frac{1}{z-b_{\nu}}\right)
$$

in a disk D with center 0 . By (29) on p.126,

$$
\varphi_{n}(z)=\frac{1}{2 \pi i} \int_{C} \frac{\varphi(\zeta)}{\zeta^{n}(\zeta-z)} d \zeta
$$

Taking C as the circle with center 0 and radius $\frac{\left|b_{\nu}\right|}{2}$ and $n=n_{\nu}+1$ we deduce

$$
\left|\varphi_{n_{\nu}+1}(z)\right| \leq \frac{1}{2 \pi} 2 \pi \frac{\left|b_{\nu}\right|}{2} \frac{M_{\nu}}{\left(\frac{1}{2}\left|b_{\nu}\right|\right)^{n_{\nu}+1} \cdot \frac{\left|b_{\nu}\right|}{4}} \quad \text { for }|z| \leq \frac{\left|b_{\nu}\right|}{4}
$$

where

$$
M_{\nu}=\max _{z \in C}\left|P_{\nu}\left(\frac{1}{z-b_{\nu}}\right)\right| .
$$

Thus by Theorem 8 on p.125,

$$
\begin{equation*}
\left|P_{\nu}\left(\frac{1}{z-b_{\nu}}\right)-p_{\nu}(z)\right| \leq 2 M_{\nu}\left(\frac{2|z|}{\left|b_{\nu}\right|}\right)^{n_{\nu}+1} \quad \text { for }|z| \leq \frac{\left|b_{\nu}\right|}{4} \tag{2}
\end{equation*}
$$

We now select n_{ν} large enough so that

$$
2^{n_{\nu}} \geq M_{\nu} 2^{\nu}
$$

Then

$$
2 M_{\nu}\left(\frac{2|z|}{\left|b_{\nu}\right|}\right)^{n_{\nu}+1} \leq 2^{-\nu} \quad \text { for }|z| \leq \frac{\left|b_{\nu}\right|}{4} .
$$

We claim now that the sum (1) converges uniformly in each disk $|z| \leq R$ (except at the poles) and thus represents a meromorphic function $h(z)$. To see this we split the sum in (1):

$$
\begin{equation*}
h(z)=\sum_{\frac{\left|b_{\nu}\right|}{4} \leq R}\left(P_{\nu}\left(\frac{1}{z-b_{\nu}}\right)-p_{\nu}(z)\right)+\sum_{\frac{\left|b_{\nu}\right|}{4}>R}\left(P_{\nu}\left(\frac{1}{z-b_{\nu}}\right)-p_{\nu}(z)\right) . \tag{3}
\end{equation*}
$$

Because of (2), the second sum is holomorphic for $|z| \leq R$ since $R \leq \frac{\left|b_{\nu}\right|}{4}$. The first sum is finite and has

$$
P_{\nu}\left(\frac{1}{z-b_{\nu}}\right)
$$

as the singular part at the pole b_{ν}.
This proves the existence. If f is any other meromorphic function with these properties, then $f(z)-h(z)$ is holomorphic.
Q.E.D.

Exercise 3 on p. 178

Here we need some preparation on series of the form

$$
\sum_{n=1}^{\infty} a_{n} v_{n}
$$

and use on

$$
a_{n}=(-1)^{n}, v_{n}=(1+n)^{-s}, \quad s=\sigma+i t
$$

We have if

$$
A_{n}=a_{0}+\cdots+a_{n}
$$

then

$$
A_{0} v_{0}+\sum_{n=1}^{N}\left(A_{n}-A_{n-1}\right) v_{n}-\sum_{n=0}^{N-1} A_{n}\left(v_{n}-v_{n+1}\right)=A_{N} v_{N}
$$

Lemma 1 If $\left(A_{n}\right)$ is bounded, $v_{n} \rightarrow 0$, and

$$
\sum_{n=1}^{\infty}\left|v_{n}-v_{n+1}\right|<\infty
$$

then $\sum_{n=0}^{\infty} a_{n} v_{n}$ converges.
This is obvious from the identity above.
In our example,

$$
v_{n}=\left|(1+n)^{-s}\right|=\frac{1}{(1+n)^{\sigma}}
$$

so $v_{n} \rightarrow 0$ even uniformly on compact subsets of $\operatorname{Re} s>0$. For $v_{n}-v_{n+1}$ we have

$$
v_{n}-v_{n+1}=\frac{1}{(n+1)^{s}}-\frac{1}{(n+2)^{s}}=s \int_{n+1}^{n+2} x^{-s-1} d x
$$

so

$$
\left|v_{n}-v_{n+1}\right| \leq|s| \frac{1}{(n+1)^{\sigma+1}}
$$

Thus

$$
\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n^{s}}
$$

converges, and actually uniformly on compact sets in the region $\sigma>0$ because this is the case with $v_{n} \rightarrow 0$ and $\sum\left|v_{n}-v_{n+1}\right|$.

Exercise 1 on p. 186

For a given annulus

$$
R_{1}<|z-a|<R_{2},
$$

the expansion

$$
\sum_{-\infty}^{\infty} A_{n}(z-a)^{-n}
$$

is unique because the coefficients are determined by (3). For different annuli (even with the same center) the expansion for a given function may be different. Consider

$$
\begin{aligned}
\frac{1}{z-a} & =\frac{1}{z-b-(a-b)} \\
& =\frac{1}{1-\frac{z-b}{a-b}} \frac{1}{b-a} \\
& =\frac{1}{1-\frac{a-b}{z-b}} \frac{1}{z-b} .
\end{aligned}
$$

The first formula gives

$$
\frac{1}{z-a}=\frac{1}{b-a} \sum_{n=0}^{\infty}\left(\frac{z-b}{a-b}\right)^{n} \quad \text { for } 0<|z-b|<|a-b|,
$$

the second

$$
\frac{1}{z-a}=\frac{1}{z-b} \sum_{n=0}^{\infty}\left(\frac{a-b}{z-b}\right)^{n} \quad \text { for }|a-b|<|z-b|<\infty .
$$

