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Lecture 17: Mittag-Leffer’s Theorem
 

(Text 187-190) 

Theorem 1 (Mittag-Leffer’s Theorem) Let {bν} be a sequence in C such that 

lim bν = ∞, 
ν→∞ 

and Pν(ζ) polynomials without constant term. Then there exist functions f mero

morphic in C with poles at just the points bν and corresponding singular parts 

1 
Pν . 

z − bν 

The most general f(z) of this kind can be written 

 1 
f(z) = g(z) + Pν − pν(z) (1) 

z − bν
ν 

where g is holomorphic in z and the pν are polynomials. 

1 
Proof: We may assume all bν  = 0. Consider the Taylor series for Pν 

z − bν 

around z = 0. It is analytic for |z| < |bν |. Let pν(z) be the partial sum up to z nν 

(nν to be determined later). Consider the finite Taylor series of 

1 
ϕ(z) = Pν 

z − bν 

in a disk D with center 0. By (29) on p.126, 

1 ϕ(ζ)
ϕn(z) = dζ. 

2πi C ζ
n(ζ − z) 
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|bν |
Taking C as the circle with center 0 and radius and n = nν + 1 we deduce 

2 

1 |bν | Mν |bν |
|ϕnν+1(z)| ≤ 2π for |z| ≤ ,

2π 2 (1 |bν |)nν+1 · |bν | 4 
2 4 

where 
  

 1  
  Mν = max Pν . 
  

z∈C z − bν

Thus by Theorem 8 on p.125,

  

nν+1 
 1  2|z| |bν | 
  Pν − pν(z) ≤ 2Mν for |z| ≤ . (2) 
  z − bν |bν | 4 

We now select nν large enough so that 

2nν ≥ Mν2
ν . 

Then 
2|z| 

nν+1 
|bν |

≤ 2−ν2Mν for |z| ≤ . 
|bν | 4 

We claim now that the sum (1) converges uniformly in each disk |z| ≤ R (except 
at the poles) and thus represents a meromorphic function h(z). To see this we split 
the sum in (1): 

1 1 
h(z) = 

|bν | 
4 ≤R 

Pν 
z − bν 

− pν(z) + 
|bν | 
4 >R 

Pν 
z − bν 

− pν(z) . (3) 

Because of (2), the second sum is holomorphic for |z| ≤ R since R ≤ |bν | 
4 . The 

first sum is finite and has 
1 

Pν 
z − bν 

as the singular part at the pole bν . 

This proves the existence. If f is any other meromorphic function with these 
properties, then f(z)−h(z) is holomorphic. Q.E.D. 
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Exercise 3 on p.178 

Here we need some preparation on series of the form 

∞ 

anvn 

n=1 

and use on 
an = (−1)n , vn = (1 + n)−s , s = σ + it. 

We have if
 
An = a0 + · · · + an,
 

then 
N N−1 

A0v0 + (An − An−1)vn − An(vn − vn+1) = ANvN . 
n=1 n=0 

Lemma 1 If (An) is bounded, vn → 0, and 

∞ 

|vn − vn+1| < ∞, 
n=1 

∞ 
L

then anvn converges. 
n=0 

This is obvious from the identity above.
 

In our example,
 

vn = |(1 + n)−s| =
1 

,

(1 + n)σ 

so vn → 0 even uniformly on compact subsets of Res > 0. For vn − vn+1 we have 

1 1 n+2 

vn − vn+1 = − = s x −s−1 dx, 
(n + 1)s (n + 2)s

n+1 

so 
1 

|vn − vn+1| ≤ |s| . 
(n + 1)σ+1 

Thus 
∞ 

(−1)n−1 1 

ns 

n=1 

converges, and actually uniformly on compact sets in the region σ > 0 because this 
L

is the case with vn → 0 and |vn − vn+1|. 

3
 

∑

∑
∑

∑

∑

∫



 

 

� �

 

� �

Exercise 1 on p.186 

For a given annulus 
R1 < |z − a| < R2, 

the expansion 
∞ 

An(z − a)−n 

−∞ 

is unique because the coefficients are determined by (3). For different annuli (even 
with the same center) the expansion for a given function may be different. Consider 

1 1 
= 

z − a z − b − (a − b) 
1 1 

= 
z−b1 − b − a 
a−b 

1 1 
= . 

1 − a−b z − b 
z−b 

The first formula gives 

∞ n
1 1 z − b 

= for 0 < |z − b| < |a − b|, 
z − a b − a a − b 

n=0 

the second 

∞ n
1 1 a − b 

= for |a − b| < |z − b| < ∞. 
z − a z − b z − b 

n=0 
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