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� � 

Lecture 16: Harmonic Functions


(Replacing Text 162-170) 

While integrals like 
ϕ f(z) dz and 

ϕ M dx+N dy have been defined in the text 
(p.101), differential forms like dx, dy and dz = dx + i dy have not been defined (and 
the definition is more subtle), we shall develop the theory of harmonic functions 
(p.162-170) without differential forms. 

Definition 1 A real-valued function u(z) = u(x, y) in a region � is harmonic if 
it is C2 and satisfying the equation 

�2u �2u 
+ = 0. 

�x2 �y2 

The Cauchy-Riemann equations for a holomorphic function imply quickly that 
the real and imaginary parts of a holomorphic function are harmonic. The converse 
holds if � is simply connected: 

Theorem 1 If � is simply connected and u harmonic in �, there exists a holomor

phic function f(z) such that 
u(z) = Ref(z). 

Remark: Note the condition � is simply connected can not be removed, for ex

ample u(z) = log |z| is harmonic in the punctured plane C − {0}, but it cannot be 
written as real part of a holomorphic function. 

Proof: Put 
�u �u 

g(z) = 
�x 

− i 
�y 

= u1 + iv1. 

Then 
�u1 �2u �2u �v1 

�x 
= 

�x2 
= − 

�y2 
= 

�y 
, 

�u1 �2 u �v1 

�y 
= 

�x�y 
= − 

�x 
. 
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So by the Cauchy-Riemann equation, g is holomorphic. By p.142, since � is simply 
connected, 

g(z) = f �(z) 

for some holomorphic function f . Writing 

f(z) = U(x, y) + iV (x, y), 

we have by the Cauchy-Riemann equation 

�U �U 
g(z) = f �(z) = 

�x 
− i

�y 
, 

so 
u(x, y) = U(x, y) + constant. 

Thus 
u(z) = Ref(z) + constant. 

Q.E.D. 

Corollary 1 (cf. (34) p.134) If u is harmonic in �, then if the disk |z − z0| � r 
lies in �, 

1 
� 

2� 

u(z0) = u(z0 + re i�) dα. 
2ϕ 0 

More generally, if the annulus r1 � |z − z0| � r2 belongs to a region �, we have 

Theorem 20 If u is harmonic in �, and {z : r1 � |z − z0| � r2} ≥ �, then 

1 2� 

u(z0 + re i�) dα = � log r + ∂, r1 � r � r2, (1)
2ϕ 0 

where � and ∂ are constants. 

Proof: The function z √� u(z0 + z) is harmonic, so writing the Laplacian in polar 
coordinates, 

�2 1 � 1 �2 

� = + + . 
�r2 r �r r2 �α2 

Denote the left hand side of (1) by V (r), then 

�2V 1 �V 
+ = 0. 

�r2 r �r 

Writing this as 
� �V 

r = 0, 
�r �r 

the theorem follows. Q.E.D. 
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The Poisson Formula 

Let u be harmonic on |z| � 1. Then 

u = Re(f) 

where f is holomorphic on |z| � 1. Consider 

z + a 
S(z) = 

1 + āz 
, (|a| < 1) 

which maps the unit disk onto itself. Then f ∞S is holomorphic and u∞S is harmonic 
(the real part of f ∞ S). Use the corollary on it with z0 = 0, then 

1 
� 

2� 

u(a) = u(S(0)) = u(S(e i�)) d�. 
2ϕ 0 

But 
i�S(e i�) = 

ei� + a 
= e ,

1 + āei� 

so 
i� 

i� e − a 
e = . 

1 − ¯ i�ae

Hence 

iei� d� 
= 

iei� − |a|2iei� 

,
dα (1 − ¯ i�)2ae

or 
d� iei� a 2iei� 1 ae i� 

= 
− | |

i�)2 

1 
i�

− ¯
dα (1 − ¯

· · 
e − a 

(2) 
ae i 
a

=
1 
i�

− | |2
2 
. |e − a|

This gives 

Poisson’s Formula ((63) in text) 

i�)u(a) = 
1 

� 
2� 

u(e 
d� 

dα =
1 1 − |a|2 

u(z) dα. 
2ϕ 0 dα 2ϕ |z − a|2 

|z|=1 
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Schwarz� Theorem 

Theorem 2 (Schwarz� Theorem) Let U be a real piecewise continuous function 
on z = 1 and define the Poisson integral u(z) = PU (z) by| | 

u(a) = 
2

1 
ϕ 0

2�	

a 
1 
−
− 

e

|a
i�

|2
2 
U(e i�) d�, |a| < 1. (3) | |

Then u is harmonic, and 
lim u(z) = U(e i�0 ) 

z�ei�0 

if U is continuous at e i�0 . 

Proof: We may assume �0 = 0. Since 

1 − 2 � 
i� + z 

� |z|
= Re 

e
, |z − ei�|2 ei� − z 

u is the real part of a holomorphic function, hence harmonic. 

Because of (2) formula (3) can be written 

1 
� 

2� 

u(S(0)) = U(S(e i�)) d�. 
2ϕ 0 

Taking a = tanh t we obtain as t � → 

1 
� 

2� ei� + tanh t 
u(tanh t) = U	 d� 

2ϕ 0 tanh tei� + 1 

1 2� 

−� 
2ϕ 0 

U(1) d� 

= U(1). 

Q.E.D. 
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Exercise 5, p.171 

Since log 1 + z is harmonic in z < 1 we have by the mean-value theorem | | | | 

1 � 

2ϕ 
log |1 + re i� | dα = log 1 = 0 (4) 

−� 

for r < 1. We shall now show that 

�log 1 + re i� | | 

is bounded by an integrable function g(α). So by the dominated convergence theorem 
we can let r � 1 under the integral sign, giving the desired result 

−� 
log |1 + e i� | dα = 0. (5) 

Since the integrand log 1 + e i� changes sign on the circle, we split the circle 
2� 2� 

| | 
4�into the two arcs (− , ) and (2� , ), where we have 

3 3 3 3 

|1 + e i� | � 1 

and 
|1 + e i� | � 1 

respectively. In the first interval we have cos α � − 1 so 
2 

≤
3 i� i� α 2ϕ 1 

2 
� |1 + re | � |1 + e | = 2 cos 

2
, |α| � 

3 
, and r � 

2 
. (6) 

In the second interval we put α = ϕ +� and we see from the geometry, since |�| � � ,
3 

that 

α 2ϕ 4ϕ 
1 � |1 + re i� | = |1 − re i� | � 1 − cos � = 2 cos2 

2
, 

3 
� α � 

3 
. (7) 

α i�Since log 
�

�cos 
2 �

� is integrable, the estimates (6) and (7) show that | log |1 + re || is 
bounded by an integrable function g(α), so (5) is established. 
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