MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 16: Harmonic Functions

(Replacing Text 162-170)

While integrals like $\int_{\gamma} f(z) d z$ and $\int_{\gamma} M d x+N d y$ have been defined in the text (p.101), differential forms like $d x, d y$ and $d z=d x+i d y$ have not been defined (and the definition is more subtle), we shall develop the theory of harmonic functions (p.162-170) without differential forms.

Definition 1 A real-valued function $u(z)=u(x, y)$ in a region Ω is harmonic if it is C^{2} and satisfying the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 .
$$

The Cauchy-Riemann equations for a holomorphic function imply quickly that the real and imaginary parts of a holomorphic function are harmonic. The converse holds if Ω is simply connected:

Theorem 1 If Ω is simply connected and u harmonic in Ω, there exists a holomorphic function $f(z)$ such that

$$
u(z)=\operatorname{Re} f(z)
$$

Remark: Note the condition Ω is simply connected can not be removed, for example $u(z)=\log |z|$ is harmonic in the punctured plane $\mathbb{C}-\{0\}$, but it cannot be written as real part of a holomorphic function.

Proof: Put

$$
g(z)=\frac{\partial u}{\partial x}-i \frac{\partial u}{\partial y}=u_{1}+i v_{1} .
$$

Then

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial x}=\frac{\partial^{2} u}{\partial x^{2}}=-\frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial v_{1}}{\partial y} \\
& \frac{\partial u_{1}}{\partial y}=\frac{\partial^{2} u}{\partial x \partial y}=-\frac{\partial v_{1}}{\partial x}
\end{aligned}
$$

So by the Cauchy-Riemann equation, g is holomorphic. By p.142, since Ω is simply connected,

$$
g(z)=f^{\prime}(z)
$$

for some holomorphic function f. Writing

$$
f(z)=U(x, y)+i V(x, y)
$$

we have by the Cauchy-Riemann equation

$$
g(z)=f^{\prime}(z)=\frac{\partial U}{\partial x}-i \frac{\partial U}{\partial y}
$$

so

$$
u(x, y)=U(x, y)+\text { constant }
$$

Thus

$$
u(z)=\operatorname{Re} f(z)+\text { constant }
$$

Q.E.D.

Corollary 1 (cf. (34) p.134) If u is harmonic in Ω, then if the disk $\left|z-z_{0}\right| \leq r$ lies in Ω,

$$
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta
$$

More generally, if the annulus $r_{1} \leq\left|z-z_{0}\right| \leq r_{2}$ belongs to a region Ω, we have Theorem 20 If u is harmonic in Ω, and $\left\{z: r_{1} \leq\left|z-z_{0}\right| \leq r_{2}\right\} \in \Omega$, then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta=\alpha \log r+\beta, \quad r_{1} \leq r \leq r_{2} \tag{1}
\end{equation*}
$$

where α and β are constants.
Proof: The function $z \mapsto u\left(z_{0}+z\right)$ is harmonic, so writing the Laplacian in polar coordinates,

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

Denote the left hand side of (1) by $V(r)$, then

$$
\frac{\partial^{2} V}{\partial r^{2}}+\frac{1}{r} \frac{\partial V}{\partial r}=0
$$

Writing this as

$$
\frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)=0
$$

the theorem follows.
Q.E.D.

The Poisson Formula

Let u be harmonic on $|z| \leq 1$. Then

$$
u=\operatorname{Re}(f)
$$

where f is holomorphic on $|z| \leq 1$. Consider

$$
S(z)=\frac{z+a}{1+\bar{a} z}, \quad(|a|<1)
$$

which maps the unit disk onto itself. Then $f \circ S$ is holomorphic and $u \circ S$ is harmonic (the real part of $f \circ S$). Use the corollary on it with $z_{0}=0$, then

$$
u(a)=u(S(0))=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(S\left(e^{i \varphi}\right)\right) d \varphi
$$

But

$$
S\left(e^{i \varphi}\right)=\frac{e^{i \varphi}+a}{1+\bar{a} e^{i \varphi}}=e^{i \theta}
$$

so

$$
e^{i \varphi}=\frac{e^{i \theta}-a}{1-\bar{a} e^{i \theta}} .
$$

Hence

$$
i e^{i \varphi} \frac{d \varphi}{d \theta}=\frac{i e^{i \theta}-|a|^{2} i e^{i \theta}}{\left(1-\bar{a} e^{i \theta}\right)^{2}}
$$

or

$$
\begin{align*}
\frac{d \varphi}{d \theta} & =\frac{i e^{i \theta}-|a|^{2} i e^{i \theta}}{\left(1-\bar{a} e^{i \theta}\right)^{2}} \cdot \frac{1}{i} \cdot \frac{1-\bar{a} e^{i \theta}}{e^{i \theta}-a} \\
& =\frac{1-|a|^{2}}{\left|e^{i \theta}-a\right|^{2}} \tag{2}
\end{align*}
$$

This gives
Poisson's Formula ((63) in text)

$$
u(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(e^{i \theta}\right) \frac{d \varphi}{d \theta} d \theta=\frac{1}{2 \pi} \int_{|z|=1} \frac{1-|a|^{2}}{|z-a|^{2}} u(z) d \theta
$$

Schwarz' Theorem

Theorem 2 (Schwarz' Theorem) Let U be a real piecewise continuous function on $|z|=1$ and define the Poisson integral $u(z)=P_{U}(z)$ by

$$
\begin{equation*}
u(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-|a|^{2}}{\left|a-e^{i \varphi}\right|^{2}} U\left(e^{i \varphi}\right) d \varphi, \quad|a|<1 \tag{3}
\end{equation*}
$$

Then u is harmonic, and

$$
\lim _{z \rightarrow e^{i \varphi_{0}}} u(z)=U\left(e^{i \varphi_{0}}\right)
$$

if U is continuous at $e^{i \varphi_{0}}$.
Proof: We may assume $\varphi_{0}=0$. Since

$$
\frac{1-|z|^{2}}{\left|z-e^{i \varphi}\right|^{2}}=\operatorname{Re}\left(\frac{e^{i \varphi}+z}{e^{i \varphi}-z}\right)
$$

u is the real part of a holomorphic function, hence harmonic.
Because of (2) formula (3) can be written

$$
u(S(0))=\frac{1}{2 \pi} \int_{0}^{2 \pi} U\left(S\left(e^{i \varphi}\right)\right) d \varphi
$$

Taking $a=\tanh t$ we obtain as $t \rightarrow \infty$

$$
\begin{aligned}
u(\tanh t) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} U\left(\frac{e^{i \varphi}+\tanh t}{\tanh t e^{i \varphi}+1}\right) d \varphi \\
& \longrightarrow \frac{1}{2 \pi} \int_{0}^{2 \pi} U(1) d \varphi \\
& =U(1)
\end{aligned}
$$

Q.E.D.

Exercise 5, p. 171

Since $\log |1+z|$ is harmonic in $|z|<1$ we have by the mean-value theorem

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left|1+r e^{i \theta}\right| d \theta=\log 1=0 \tag{4}
\end{equation*}
$$

for $r<1$. We shall now show that

$$
|\log | 1+r e^{i \theta}| |
$$

is bounded by an integrable function $g(\theta)$. So by the dominated convergence theorem we can let $r \rightarrow 1$ under the integral sign, giving the desired result

$$
\begin{equation*}
\int_{-\pi}^{\pi} \log \left|1+e^{i \theta}\right| d \theta=0 \tag{5}
\end{equation*}
$$

Since the integrand $\log \left|1+e^{i \theta}\right|$ changes sign on the circle, we split the circle into the two $\operatorname{arcs}\left(-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right)$ and $\left(\frac{2 \pi}{3}, \frac{4 \pi}{3}\right)$, where we have

$$
\left|1+e^{i \theta}\right| \geq 1
$$

and

$$
\left|1+e^{i \theta}\right| \leq 1
$$

respectively. In the first interval we have $\cos \theta \geq-\frac{1}{2}$ so

$$
\begin{equation*}
\frac{\sqrt{3}}{2} \leq\left|1+r e^{i \theta}\right| \leq\left|1+e^{i \theta}\right|=2 \cos \frac{\theta}{2}, \quad|\theta| \leq \frac{2 \pi}{3}, \text { and } r \geq \frac{1}{2} . \tag{6}
\end{equation*}
$$

In the second interval we put $\theta=\pi+\varphi$ and we see from the geometry, since $|\varphi| \leq \frac{\pi}{3}$, that

$$
\begin{equation*}
1 \geq\left|1+r e^{i \theta}\right|=\left|1-r e^{i \varphi}\right| \geq 1-\cos \varphi=2 \cos ^{2} \frac{\theta}{2}, \quad \frac{2 \pi}{3} \leq \theta \leq \frac{4 \pi}{3} . \tag{7}
\end{equation*}
$$

Since $\log \left|\cos \frac{\theta}{2}\right|$ is integrable, the estimates (6) and (7) show that $|\log | 1+r e^{i \theta}| |$ is bounded by an integrable function $g(\theta)$, so (5) is established.

