MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.112 Functions of a Complex Variable Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 14: The Residue Theorem and Application (Replacing Text 148-154)

Let Ω be a region and $a \in \Omega$. Let f(z) be holomorphic in $\Omega' = \Omega - a$

Definition 1 The residue is defined as

$$R = Res_{z=a}f(z) \triangleq \frac{1}{2\pi i} \int_C f(z) \, dz,$$

where C is any circle contained in Ω with center a.

If C' is another circle with center a and

 $C' \subset \Omega$,

then Cauchy's Theorem for the annulus shows that

 $\operatorname{Res}_{z=a} f(z)$

is independence of the choice of C.

While the definition can be shown to be equivalent to Definition 3 on p.149 in the text, we shall not need this.

In place of Theorem 17 (Text p.150) we shall prove the following version:

Theorem 17 ' Let f be analytic except for isolated singularities a_j in a region Ω . Let γ be a simple closed curve which has interior contained in Ω and $a_j \notin \gamma$ (all j). Then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{j} \operatorname{Res}_{z=a_j} f(z).$$

where the sum ranges over all a_i inside γ .

By compactness of γ and its interior, the sum above is finite. For simplicity let a_1, a_2 be the singularities inside γ .

The outside of γ is connected and if we take two disks D_1, D_2 around a_1 and a_2 and connect their boundaries to γ with "bridges" as in Fig. 14-3, the piece remaining in the interior of γ is simply connected (the complement is connected). Thus the integral over the boundary of this region is 0.

Letting the widths of the bridges tend to 0, the theorem follows. Q.E.D.

Calculation of residues.

1. If

$$\lim_{z \to a} f(z)(z-a)$$

exists and is finite, then it equals $\operatorname{Res}_{z=a} f(z)$.

In fact a is then a pole of f(z), so

$$f(z) = B_h(z-a)^{-h} + \dots + B_1(z-a)^{-1} + \varphi(z), \qquad B_h \neq 0.$$

Then

$$\frac{1}{2\pi i} \int_C f(z) \, dz = B_1$$

and since the singular part above equals

$$(z-a)^{-h}(B_h+B_{h-1}(z-a)+\cdots+B_1(z-a)^{h-1})$$

the finiteness of the limit implies $h \leq 1$.

2. If
$$f(z) = \frac{g(z)}{h(z)}$$
 where $g(a) \neq 0$ and $h(z)$ has a simple zero at $z = a$, then
 $\operatorname{Res}_{z=a} f(z) = \frac{g(a)}{h'(a)}.$

In fact

$$\lim_{z \to a} f(a)(z-a) = \lim_{z \to a} g(z) \frac{1}{\frac{h(z) - h(a)}{z-a}} = \frac{g(a)}{h'(a)}$$

3. If f has a pole of order h, then

$$\operatorname{Res}_{z=a} f(z) = \frac{1}{(h-1)!} \left\{ \frac{d^{h-1}}{dz^{h-1}} (z-a)^h f(z) \right\}_{z=a}$$

In fact

$$f(z) = (z - a)^{-h}g(z),$$

where g is holomorphic at a. So

$$g^{(h-1)}(a) = (h-1)! \frac{1}{2\pi i} \int_C \frac{g(z)}{(z-a)^h} dz = (h-1)! \operatorname{Res}_{z=a} f(z).$$

Example: (from text p.151.)

$$f(z) = \frac{e^z}{(z-a)^2} \implies \operatorname{Res}_{z=a} f(z) = \left(\frac{d}{dz}e^z\right)_{z=a} = e^a.$$

Application: The Argument Principle.

Theorem 18 ' Let f(z) be meromorphic in Ω , $\gamma \subset \Omega$ a simple closed curve with interior inside Ω . Assume γ passes through no zeros nor poles of f. Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = N - P,$$

where N is the number of zeros, P the number of poles inside γ , all counted with multiplicity.

Proof: By theorem 17', the integral is the sum of the residues of f'(z)/f(z).

At a zero a of order h, we have

$$f(z) = (z - a)^h f_h(z), \qquad f_h(a) \neq 0$$

and

$$\frac{f'(z)}{f(z)} = \frac{h}{z-a} + \frac{f'_h(z)}{f_h(z)} \implies \text{Residue } h,$$

At a pole b of order k, we have similarly

$$\frac{f'(z)}{f(z)} = \frac{-k}{z-b} + \frac{f'_h(z)}{f_h(z)} \implies \text{Residue } -k.$$

Now the result follows from Theorem 17'.

Q.E.D.

Corollary 1 (Rouche's Theorem) Let f and g be holomorphic in a region Ω . Let γ be a simple closed curve in Ω with interior $\subset \Omega$. Assume

$$|f(z) - g(z)| < f(z) \qquad on \qquad \gamma.$$

Then f and g have the same number of zeros inside γ , say N_f and N_g .

Proof: (The text does not take into account the case when f and g have common **g** ros). The inequality implies that f and g are **g** ro-free on γ . Put

$$\psi(z) = \frac{g(z)}{f(z)},$$

then

$$|\psi(z) - 1| < 1$$

on γ , so the curve $\Gamma = \psi(\gamma)$ lies in the disk $|\zeta - 1| < 1$. Hence

$$\frac{1}{2\pi i} \int_{\gamma} \frac{\psi'(z)}{\psi(z)} dz = \int_{\Gamma} \frac{d\zeta}{\zeta} = n(\Gamma, 0) = 0$$

(book p.116). Now

$$N_g = \frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz$$

= $\frac{1}{2\pi i} \int_{\gamma} \frac{\psi' f + \psi f'}{\psi f} dz$
= $\frac{1}{2\pi i} \int_{\gamma} \frac{\psi'(z)}{\psi(z)} dz + \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$
= N_f .

This proves the result.

```
Q.E.D.
```

Exercise 2 p.154

We use Rouche's theorem twice, first on $\gamma : |z| = 2$ and then on $\gamma : |z| = 1$. For $\gamma : |z| = 2$, take $f(z) = z^4$, $g(z) = z^4 - 6z + 3$. For $\gamma : |z| = 1$, take f(z) = -6z, $g(z) = z^4 - 6z + 3$.