MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 11: Isolated Singularities

(Text 126-130)

Remarks on Lecture 11

Singularities: Let $f(z)$ be holomorphic in a disk $0<|z-a|<\delta$ with the center a removed.
(i) If

$$
\lim _{z \rightarrow a} f(z)
$$

exist or if just

$$
\lim _{z \rightarrow a} f(z)(z-a)=0
$$

then a is a removable singularity and f extends to a holomorphic function on the whole disk $\mid \overline{z-a \mid<\delta}$.
(ii) If

$$
\lim _{z \rightarrow a} f(z)=\infty
$$

a is said to be a pole. In this case

$$
f(z)=(z-a)^{-h} f_{h}(z)
$$

where h is a positive integer and $f_{h}(z)$ is holomorphic at a and $f_{h}(a) \neq 0$. We also have the polar development

$$
f(z)=B_{h}(z-a)^{-h}+\cdots+B_{1}(z-a)^{-1}+\varphi(z)
$$

where $\varphi(z)$ is holomorphic at a.
If neither (i) nor (ii) holds, a is said to be an essential singularity.

Theorem 9 A holomorphic function comes arbitrarily close to any complex value in every neighborhood of an essential singularity.
 that

$$
|f(z)-A|>\delta \quad \text { for }|z-a|<\epsilon
$$

Then

$$
\lim _{z \rightarrow a}(z-a)^{-1}(f(z)-A)=\infty
$$

So

$$
(z-a)^{-1}(f(z)-A)
$$

has a pole at $z=a$. Thus

$$
f(z)-A=(z-a)(z-a)^{-h} g(z)
$$

where $h \in \mathbb{Z}^{+}$and $g(z)$ is holomorphic at $z=a$.
If $h=1, f(z)$ has a removable singularity at $z=a$. If $h>1, f(z)-A$ has a pole at $z=a$ and so does $f(z)$. Both possibilities are excluded by assumption, so the proof is complete.
Q.E.D.

Exercise 4 on p. 130.

Suppose f is meromorphic in $\mathbb{C} \cup\{\infty\}$. We shall prove f is a rational function. If ∞ is a pole, we work with $g=1 / f$, so we may assume ∞ is not a pole. It is not an essential singularity, so ∞ is a removable singularity. Thus for some $R>0, f(z)$ is bounded for $|z| \geq R$. Since the poles of $f(z)$ are isolated, there are just finitely many poles in the disk $|z| \leq R$. (Poles of $f(z)$ are zeroes of $1 / \mathrm{f}(\mathrm{z})$.) At a pole a, use the polar development near a

$$
f(z)=B_{h}(z-a)^{-h}+\cdots+B_{1}(z-a)^{-1}+\varphi(z) .
$$

The equation shows that φ extends to a meromorphic function on $\mathbb{C} \cup \infty$ with one less pole than $f(z)$. We can then do this argument with $\varphi(z)$ and after iteration we obtain

$$
f(z)=\sum_{i=1}^{n} P_{i}\left(\frac{1}{z-a_{i}}\right)+g(z)
$$

where P_{i} are polynomials and g is holomorphic in \mathbb{C}. The formula shows that g is bounded for $|z|>g e R$ and being analytic on $|z| \leq R$, it thus must be bounded on \mathbb{C}. By Liouville's theorem, it is constant. So f is a rational function.

