MIT OpenCourseWare
http://ocw.mit.edu

18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 10: The Special Cauchy's Formula and Applications

(Text 118-126)

Remarks on Lecture 10

Exercise 6 on page 108
The values of $f(z)$ lie in the disk $|w-1|<1$ which is contained in the slit plane where $\log w$ is defined. thus $\log f(z)$ is well-defined and holomorphic in Ω and has derivative

$$
\frac{1}{f(z)} f^{\prime}(z)
$$

Thus

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

by the Primitive theorem.

Exercise 2 on page 120
By using the substitution $w=\varphi(z)=-z$ we have

$$
\int_{\varphi(\gamma)} \frac{d w}{w^{2}+1}=\int_{\gamma} \frac{-d z}{z^{2}+1}
$$

Since $\varphi(\gamma)=\gamma$ (including the orientation). Thus the integral is 0 .
Also

$$
\frac{1}{z^{2}+1}=\frac{1}{z-i}-\frac{1}{z+i}
$$

and

$$
n(\gamma, i)=n(\gamma,-i),
$$

so again the total integral is 0 .

Exercise 3 on page 120

On $|z|=\rho$, we can write $z=\rho e^{i \theta}$, thus

$$
\frac{d z}{d \theta}=\rho e^{i \theta} i
$$

so

$$
\frac{d z}{z}=i d \theta
$$

and

$$
|d z|=\rho d \theta=-i \rho \frac{d z}{z} .
$$

Thus

$$
\begin{aligned}
\int_{|z|=\rho} \frac{|d z|}{|z-a|^{2}} & =-i \rho \int_{|z|=\rho} \frac{d z}{z(z-a)\left(\frac{\rho^{2}}{z}-\bar{a}\right)} \\
& =-i \rho\left[\frac{1}{\rho^{2}-|a|^{2}} \int_{|z|=\rho} \frac{d z}{z-a}+\frac{\bar{a}}{\rho^{2}-|a|^{2}} \int_{|z|=\rho} \frac{d z}{\rho^{2}-\bar{a} z}\right] .
\end{aligned}
$$

If $|a|>\rho$, the first term is 0 , the other term is

$$
\frac{1}{\bar{a}} \int_{|z|=\rho} \frac{d z}{\frac{\rho^{2}}{\bar{a}}-z}=-2 \pi i \frac{1}{\bar{a}},
$$

so the result is

$$
\frac{2 \pi \rho}{|a|^{2}-\rho^{2}}
$$

If $|a|<\rho$, then the second is 0 and the other is

$$
-i \rho 2 \pi i \frac{1}{\rho^{2}-|a|^{2}}=\frac{2 \pi \rho}{\rho^{2}-|a|^{2}} .
$$

Thus in both cases the result is

$$
\left|\frac{2 \pi \rho}{\rho^{2}-|a|^{2}}\right| .
$$

- The Taylor's Theorem (with remainder) proved in pp.125-126 should be stated as follows:

Theorem 1 (Taylor's Theorem) If $f(z)$ is analytic in a region Ω containing a, one has

$$
f(z)=f(a)+\frac{f^{\prime}(a)}{1!}(z-a)+\cdots+\frac{f^{n-1}(a)}{(n-1)!}(z-a)^{n-1}+f_{n}(z)(z-a)^{n}
$$

where $f_{n}(z)$ is analytic in Ω. Moreover, if C is the boundary of a closed disk contained in Ω with center a, then $f_{n}(z)$ has the representation

$$
f_{n}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta) d \zeta}{(\zeta-a)^{n}(\zeta-z)} \quad(z \text { inside } C)
$$

