MIT OpenCourseWare
http://ocw.mit.edu
18.112 Functions of a Complex Variable

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 1: The algebra of Complex numbers

(Text 1-11 \& 19-20)

Remarks on Lecture 1

- On p.19-20, it is stated that each circle in \mathbb{C}

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}=r^{2} \tag{1}
\end{equation*}
$$

has the form

$$
\left(\alpha_{0}-\alpha_{3}\right)\left(x^{2}+y^{2}\right)-2 \alpha_{1} x-2 \alpha_{2} y+\alpha_{0}+\alpha_{3}=0
$$

so the mapping $z \mapsto Z$ maps circles in the plane to circles on S. Solving the equations

$$
a=\frac{\alpha_{1}}{\alpha_{0}-\alpha_{3}}, b=\frac{\alpha_{2}}{\alpha_{0}-\alpha_{3}}, r^{2}-a^{2}-b^{2}=-\frac{\alpha_{0}+\alpha_{3}}{\alpha_{0}-\alpha_{3}}
$$

for $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ is disagreeable so we instead determine the image of the curve (1) under the map $z \mapsto Z$. Using the formulas (24)-(26) and

$$
1-x_{3}=\frac{2}{1+|z|^{2}},
$$

formula (1) becomes

$$
a x_{1}+b x_{2}+\frac{1+r^{2}-a^{2}-b^{2}}{2} x_{3}=\frac{a^{2}+b^{2}-r^{2}+1}{2} .
$$

This is a plane which must intersect the sphere so has distance <1 from 0 .

- The formula (28) can be proved geometrically as follows (Exercise 4):

Fig. 1-1

Fig. 1-2

Let $Z \in S$ lie on the plane

$$
x_{2}=0 .
$$

The angles at Z are right angles, so by similar triangles:

$$
\begin{aligned}
\frac{d(N, Z)}{2} & =\frac{1}{d(N, z)} \\
& =\frac{1}{\sqrt{1+|z|^{2}}}
\end{aligned}
$$

Thus
$\frac{d(N, Z)}{d\left(N, z^{\prime}\right)}=\frac{2}{\sqrt{1+|z|^{2}} \sqrt{1+\left|z^{\prime}\right|^{2}}}$
and by symmetry this is

$$
\frac{d\left(N, Z^{\prime}\right)}{d(N, z)}
$$

Thus the triangles $\triangle N Z Z^{\prime}$ and $\triangle N z z^{\prime}$ are similar, so the above ratio is

$$
\frac{d\left(Z, Z^{\prime}\right)}{\left|z-z^{\prime}\right|}
$$

This proves (28).

- Finally we show that the spherical representation $z \mapsto Z$ is conformal. This means that if l and m are two lines in the plane intersecting in z at an angle α, then the corresponding circles C and D through N and Z intersect Z at the same angle α. Consider the tangent plane π to S at the point N. the plane through Z and l intersects π in a line l^{\prime}. Similarly the plane through Z and m intersect π in m^{\prime}. Clearly l^{\prime} and m^{\prime} intersect at N at the same angle α. Since they are tangents to C and D at N, C and D must intersect at the angle α both at N and at Z.

