### 18.103 Final Review 2013

The Fourier transform on $\mathbb{R}$ is defined for all $f \in L^{1}(\mathbb{R})$ by $\hat{f}(t)=\int_{\mathbb{R}} f(x) e^{-i t x} d x$. Denoting $G(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$, we have

$$
\hat{G}(t)=e^{-t^{2} / 2}
$$

Main Approximate Identity Lemma. Let $K \in L^{1}(\mathbb{R})$ satisfy

$$
\int_{\mathbb{R}} K(x) d x=1
$$

and denote $K_{a}(x)=(1 / a) K(x / a), a>0$. Then for every $x \in \mathbb{R}$ and $f \in C_{0}(\mathbb{R})$,

$$
\lim _{a \rightarrow 0^{+}} f * K_{a}(x)=f(x)
$$

Theorem 1 (Fourier inversion on $\mathcal{S}$ ). The mappings $T_{1}$ and $T_{2}$ defined for $f$ and $g$ in $\mathcal{S}(\mathbb{R})$ by the Riemann integrals

$$
\left(T_{1} f\right)(t)=\int_{\mathbb{R}} f(x) e^{-i t x} d x ; \quad\left(T_{2} g\right)(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} g(t) e^{i t x} d t
$$

send the Schwartz class $\mathcal{S}$ to itself. Moreover, the compositions $T_{2} T_{1}$ and $T_{1} T_{2}$ are both the identity mapping on $\mathcal{S}$.
Theorem 2 (Plancherel).
a) For all $f$ and $g$ in $\mathcal{S}$,

$$
\left\|T_{1} f\right\|^{2}=2 \pi\|f\|^{2} ; \quad 2 \pi\left\|T_{2} g\right\|^{2}=\|g\|^{2}
$$

where

$$
\|f\|^{2}=\int_{\mathbb{R}}|f(x)|^{2} d x
$$

b) $T_{1}$ and $T_{2}$ have unique extensions from $\mathcal{S}$ to continuous mappings from $L^{2}(\mathbb{R})$ to itself, $T_{1} T_{2}$ and $T_{2} T_{1}$ are the identity mapping on $L^{2}(\mathbb{R})$ and the properties of part (a) are valid for all $f$ and $g$ in $L^{2}(\mathbb{R})$.

Theorem 3 (Fourier inversion with truncation). Let $f \in L^{2}(\mathbb{R})$, and denote

$$
s_{N}(x)=\frac{1}{2 \pi} \int_{-N}^{N} \hat{f}(\xi) e^{i x t} d t
$$

Then

$$
\lim _{N \rightarrow \infty} \int_{\mathbb{R}}\left|s_{N}(x)-f(x)\right|^{2} d x=0
$$

Proposition. If $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$, then

$$
T_{1} f(t)=\int_{\mathbb{R}} f(x) e^{-i x t} d x \quad T_{2} g(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} g(t) e^{i x t} d t
$$

Theorem 4. Let

$$
f * g(x)=\int_{\mathbb{R}} f(x-y) g(y) d y
$$

If $f \in L^{1}(\mathbb{R})$ and $g \in L^{1}(\mathbb{R})$ or (and this requires more work) if $f \in L^{2}(\mathbb{R})$ and $g \in L^{2}(\mathbb{R})$, then

$$
\widehat{(f * g)}(t)=\hat{f}(t) \hat{g}(t)
$$

## Review Problems

1. 

a) Find the Fourier series of the function

$$
f(x)=\left\{\begin{array}{lc}
1, & 0<x<\pi \\
0, & -\pi<x<0
\end{array}\right.
$$

extended periodically with period $2 \pi$. Pay attention to three cases $n=0$ and $n \neq 0$ odd and even, separately.
b) Express your series with real numbers, sines and cosines.
c) At which points $x$ does the series converge and to what value? Explain with statements of theorems.
2. Suppose that $f \in L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})$ takes the form

$$
f(\theta)=\sum_{n=1}^{\infty} a_{n} e^{i n \theta}
$$

Recall that if $z=r e^{i \theta}=x+i y$,

$$
F(z)=\sum_{n=1}^{\infty} r^{n} a_{n} e^{i n \theta}
$$

is a harmonic (and even analytic) function in $|z|<1$.
a) Why does the series for $F(z)$ converge for $|z|<1$ ?
b) Let $f_{r}(\theta)=F\left(r e^{i \theta}\right)$, the values of $F$ on the circle of radius $r$. Calculate $\left\|f_{r}-f\right\|_{2}$ in terms $r$ and $a_{n}$, and show that $F$ takes on the boundary values in the sense that

$$
\lim _{r \rightarrow 1^{-}}\left\|f_{r}-f\right\|_{2}=0
$$

c) Evaluate the integral

$$
\iint_{|z|<1}|(\partial / \partial r) F(z)|^{2}(1-|z|) d x d y
$$

in terms of the coefficients $a_{n}$. Explain at an appropriate point before, during or after the computation, why the integral is finite.
3. Fourier inversion on the Schwartz class $\mathcal{S}(\mathbb{R})$. (Approximate identity Lemma and Theorem 1 above.)
a) Recall that $C_{0}(\mathbb{R})$ is defined as the class of continuous functions on $\mathbb{R}$ that tend to zero at $\pm \infty$. Show that if $K \in L^{1}(\mathbb{R})$ and

$$
\int_{\mathbb{R}} K(x) d x=1 ; \quad K_{a}(x)=\frac{1}{a} K(x / a), \quad a>0
$$

then

$$
\lim _{a \rightarrow 0} f * K_{a}(x)=f(x)
$$

for every $x \in \mathbb{R}$ and every $f \in C_{0}(\mathbb{R})$. Make use in your proof of the quantities

$$
Q=\int_{\mathbb{R}}|K(x)| d x ; \quad M=\max _{x \in \mathbb{R}}|f(x)|
$$

and the modulus of continuity of $f$,

$$
\omega(r)=\max _{x \in \mathbb{R} ;|y| \leq r}|f(x+y)-f(x)|
$$

b) Show that for every $f \in \mathcal{S}, \quad f(0)=\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{f}(t) d t$. You may assume without proof that for every $f$ and $g$ in $\mathcal{S}, \hat{f}$ and $\hat{g}$ belong to $\mathcal{S}$ and

$$
\int_{\mathbb{R}} f(y) \hat{g}(y) d y=\int_{\mathbb{R}} \hat{f}(t) g(t) d t
$$

c) Deduce the Fourier inversion formula (formula for $f(x)$ in terms of $\hat{f}$ ) for $f \in \mathcal{S}$.
4. Fourier inversion formula on $L^{2}(\mathbb{R})$ (Proof of Theorem 3 and the proposition above.)
a) For $f \in L^{2}(\mathbb{R})$ and denote

$$
s_{N}(x)=\frac{1}{2 \pi} \int_{-N}^{N} \hat{f}(t) e^{i x t} d t
$$

Explain why the integral defining $s_{N}(x)$ converges and why $s_{N}$ is continuous.
b) Prove that if $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$, then

$$
\left(T_{1} f\right)(t)=\int_{\mathbb{R}} f(x) e^{-i t x} d x
$$

following the three steps with *'s below.
You may assume that for any $f \in L^{1} \cap L^{2}$, there is a sequence of functions $f_{k} \in \mathcal{S}$ such that $\left\|f-f_{k}\right\|_{L^{1}}+\left\|f-f_{k}\right\|_{L^{2}} \rightarrow 0$ as $k \rightarrow \infty$. Define

$$
\varphi_{k}(t)=\int_{\mathbb{R}} f_{k}(x) e^{-i t x} d x ; \quad \varphi(t)=\int_{\mathbb{R}} f(x) e^{-i t x} d x
$$

* Show that $\varphi_{k}(t)$ tends to $\varphi(t)$ for each $t$ as $k \rightarrow \infty$.
* Show that $\left\|\varphi_{k}-T_{1} f\right\|_{L^{2}}$ tends to 0 as $k \rightarrow \infty$.
* Deduce that $\varphi(t)=\left(T_{1} f\right)(t)$ (This equality holds in what sense?) Hint: Fatou's lemma leads to the fastest proof, but you may use other methods.
c) Deduce that

$$
\lim _{N \rightarrow \infty} \int_{\mathbb{R}}\left|f(x)-s_{N}(x)\right|^{2} d x=0
$$

using the statement analogous to part (b) for $T_{2}$ and the other theorems on the page of theorems as necessary.
5. Poisson summation formula. Let $\varphi \in \mathcal{S}(\mathbb{R})$. Show that

$$
\sum_{n \in \mathbb{Z}} \varphi(2 \pi n)=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} \hat{\varphi}(k)
$$

## 4

by calculating the Fourier series of

$$
F(x)=\sum_{n \in \mathbb{Z}} \varphi(x-2 \pi n)
$$

in two ways.
6. Recall that

$$
P_{y}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-y|\xi|} e^{i x \xi} d \xi=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}
$$

satisfies for all $x \in \mathbb{R}$ and all $y>0$,

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) P_{y}(x)=0
$$

In other words, $P_{y}(x)$ is harmonic in the upper half-plane $\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ and for $f \in L^{1}(\mathbb{R})$,

$$
u(x, y)=P_{y} * f(x)
$$

is harmonic in the upper half plane $y>0$.
If $f \in \mathcal{S}(\mathbb{R})$, use the Fourier transform to calculate

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}|\nabla u(x, y)|^{2} y d x d y
$$

in terms of $f$. (Either before during or after the calculation, justify all the exchanges of integrals/differentiation/limits.)

MIT OpenCourseWare
http://ocw.mit.edu

### 18.103 Fourier Analysis

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

