18.103 Final Review 2013

The Fourier transform on \mathbb{R} is defined for all $f \in L^1(\mathbb{R})$ by $\hat{f}(t) = \int_{\mathbb{R}} f(x)e^{-itx}dx$. Denoting $G(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$, we have

 $\hat{G}(t) = e^{-t^2/2}$

Main Approximate Identity Lemma. Let $K \in L^1(\mathbb{R})$ satisfy

$$\int_{\mathbb{R}} K(x) \, dx = 1$$

and denote $K_a(x) = (1/a)K(x/a), a > 0$. Then for every $x \in \mathbb{R}$ and $f \in C_0(\mathbb{R})$, $\lim_{a \to 0^+} f * K_a(x) = f(x)$

Theorem 1 (Fourier inversion on S). The mappings T_1 and T_2 defined for f and g in $S(\mathbb{R})$ by the Riemann integrals

$$(T_1 f)(t) = \int_{\mathbb{R}} f(x) e^{-itx} dx; \quad (T_2 g)(x) = \frac{1}{2\pi} \int_{\mathbb{R}} g(t) e^{itx} dt$$

send the Schwartz class S to itself. Moreover, the compositions T_2T_1 and T_1T_2 are both the identity mapping on \mathcal{S} .

Theorem 2 (Plancherel).

a) For all f and g in \mathcal{S} ,

$$||T_1f||^2 = 2\pi ||f||^2; \quad 2\pi ||T_2g||^2 = ||g||^2$$

where

$$||f||^2 = \int_{\mathbb{R}} |f(x)|^2 dx$$

b) T_1 and T_2 have unique extensions from \mathcal{S} to continuous mappings from $L^2(\mathbb{R})$ to itself, T_1T_2 and T_2T_1 are the identity mapping on $L^2(\mathbb{R})$ and the properties of part (a) are valid for all f and g in $L^2(\mathbb{R})$.

Theorem 3 (Fourier inversion with truncation). Let $f \in L^2(\mathbb{R})$, and denote

$$s_N(x) = \frac{1}{2\pi} \int_{-N}^{N} \hat{f}(\xi) e^{ixt} dt$$

Then

$$\lim_{N \to \infty} \int_{\mathbb{R}} |s_N(x) - f(x)|^2 dx = 0$$

Proposition. If $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, then

$$T_1f(t) = \int_{\mathbb{R}} f(x)e^{-ixt} dx \quad T_2g(x) = \frac{1}{2\pi} \int_{\mathbb{R}} g(t)e^{ixt} dt$$

Theorem 4. Let

$$f * g(x) = \int_{\mathbb{R}} f(x-y)g(y)dy$$

If $f \in L^1(\mathbb{R})$ and $g \in L^1(\mathbb{R})$ or (and this requires more work) if $f \in L^2(\mathbb{R})$ and $g \in L^2(\mathbb{R})$, then

$$\widehat{(f * g)}(t) = \widehat{f}(t)\widehat{g}(t)$$

Review Problems

1.

a) Find the Fourier series of the function

$$f(x) = \begin{cases} 1, & 0 < x < \pi; \\ 0, & -\pi < x < 0. \end{cases}$$

extended periodically with period 2π . Pay attention to three cases n = 0 and $n \neq 0$ odd and even, separately.

b) Express your series with real numbers, sines and cosines.

c) At which points x does the series converge and to what value? Explain with statements of theorems.

2. Suppose that $f \in L^2(\mathbb{R}/2\pi\mathbb{Z})$ takes the form

$$f(\theta) = \sum_{n=1}^{\infty} a_n e^{in\theta}$$

Recall that if $z = re^{i\theta} = x + iy$,

$$F(z) = \sum_{n=1}^{\infty} r^n a_n e^{in\theta}$$

is a harmonic (and even analytic) function in |z| < 1.

a) Why does the series for F(z) converge for |z| < 1?

b) Let $f_r(\theta) = F(re^{i\theta})$, the values of F on the circle of radius r. Calculate $||f_r - f||_2$ in terms r and a_n , and show that F takes on the boundary values in the sense that

$$\lim_{r \to 1^{-}} \|f_r - f\|_2 = 0$$

c) Evaluate the integral

$$\int \int_{|z|<1} |(\partial/\partial r)F(z)|^2 (1-|z|) \, dx \, dy$$

in terms of the coefficients a_n . Explain at an appropriate point before, during or after the computation, why the integral is finite.

3. Fourier inversion on the Schwartz class $\mathcal{S}(\mathbb{R})$. (Approximate identity Lemma and Theorem 1 above.)

a) Recall that $C_0(\mathbb{R})$ is defined as the class of continuous functions on \mathbb{R} that tend to zero at $\pm \infty$. Show that if $K \in L^1(\mathbb{R})$ and

$$\int_{\mathbb{R}} K(x)dx = 1; \qquad K_a(x) = \frac{1}{a}K(x/a), \quad a > 0$$

then

$$\lim_{a \to 0} f * K_a(x) = f(x)$$

$$Q = \int_{\mathbb{R}} |K(x)| dx; \quad M = \max_{x \in \mathbb{R}} |f(x)|$$

and the modulus of continuity of f,

$$\omega(r) = \max_{x \in \mathbb{R}; \ |y| \le r} |f(x+y) - f(x)|$$

b) Show that for every $f \in S$, $f(0) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(t) dt$. You may assume without proof that for every f and g in S, \hat{f} and \hat{g} belong to S and

$$\int_{\mathbb{R}} f(y)\hat{g}(y)dy = \int_{\mathbb{R}} \hat{f}(t)g(t)dt$$

c) Deduce the Fourier inversion formula (formula for f(x) in terms of \hat{f}) for $f \in S$.

4. Fourier inversion formula on $L^2(\mathbb{R})$ (Proof of Theorem 3 and the proposition above.)

a) For $f \in L^2(\mathbb{R})$ and denote

$$s_N(x) = \frac{1}{2\pi} \int_{-N}^N \hat{f}(t) e^{ixt} dt$$

Explain why the integral defining $s_N(x)$ converges and why s_N is continuous.

b) Prove that if $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, then

$$(T_1f)(t) = \int_{\mathbb{R}} f(x)e^{-itx}dx$$

following the three steps with *'s below.

You may assume that for any $f \in L^1 \cap L^2$, there is a sequence of functions $f_k \in S$ such that $\|f - f_k\|_{L^1} + \|f - f_k\|_{L^2} \to 0$ as $k \to \infty$. Define

$$\varphi_k(t) = \int_{\mathbb{R}} f_k(x) e^{-itx} dx; \quad \varphi(t) = \int_{\mathbb{R}} f(x) e^{-itx} dx$$

* Show that $\varphi_k(t)$ tends to $\varphi(t)$ for each t as $k \to \infty$.

* Show that $\|\varphi_k - T_1 f\|_{L^2}$ tends to 0 as $k \to \infty$.

* Deduce that $\varphi(t) = (T_1 f)(t)$ (This equality holds in what sense?) Hint: Fatou's lemma leads to the fastest proof, but you may use other methods.

c) Deduce that

$$\lim_{N \to \infty} \int_{\mathbb{R}} |f(x) - s_N(x)|^2 \, dx = 0$$

using the statement analogous to part (b) for T_2 and the other theorems on the page of theorems as necessary.

5. Poisson summation formula. Let $\varphi \in \mathcal{S}(\mathbb{R})$. Show that

$$\sum_{n \in \mathbb{Z}} \varphi(2\pi n) = \frac{1}{2\pi} \sum_{k \in \mathbb{Z}} \hat{\varphi}(k)$$

4

by calculating the Fourier series of

$$F(x) = \sum_{n \in \mathbb{Z}} \varphi(x - 2\pi n)$$

in two ways.

6. Recall that

$$P_y(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-y|\xi|} e^{ix\xi} d\xi = \frac{1}{\pi} \frac{y}{x^2 + y^2}$$

satisfies for all $x \in \mathbb{R}$ and all y > 0,

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)P_y(x) = 0,$$

In other words, $P_y(x)$ is harmonic in the upper half-plane $\{(x, y) \in \mathbb{R}^2 : y > 0\}$ and for $f \in L^1(\mathbb{R})$,

$$u(x,y) = P_y * f(x)$$

is harmonic in the upper half plane y > 0.

If $f \in \mathcal{S}(\mathbb{R})$, use the Fourier transform to calculate

$$\int_0^\infty \int_{-\infty}^\infty |\nabla u(x,y)|^2 y \, dx \, dy$$

in terms of f. (Either before during or after the calculation, justify all the exchanges of integrals/differentiation/limits.)

18.103 Fourier Analysis Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.