18.102 Introduction to Functional Analysis Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 26. Thursday, May 14:Review

Now, there was one final request before I go through a quick review of what we have done. Namely to state and prove the Hahn-Banach Theorem. This is about extension of functionals. Stately starkly, the basic question is: Does a normed space have *any* non-trivial continuous linear functionals on it? That is, is the dual space always non-trivial (of course there is always the zero linear functional but that is not very amusing). We did not really encounter this problem since for a Hilbert space, or even a pre-Hilbert space, there is always the space itsefl, giving continuous linear functionals through the pairing – Riesz' Theorem says that in the case of a Hilbert space that is all there is. I could have used the Hahn-Banach Theorem to show that any normed space has a completion, but I gave a more direct argument for this, which was in any case much more relevant for the cases of $L^1(\mathbb{R})$ and $L^2(\mathbb{R})$ for which we wanted *concrete* completions.

Theorem 19 (Hahn-Banach). If $M \subset V$ is a linear subspace of a normed space and $u: M \longrightarrow \mathbb{C}$ is a linear map such that

$$|u(t)| \le C ||t||_V \ \forall \ t \in M$$

then there exists a bounded linear functional $U: V \longrightarrow \mathbb{C}$ with $||U|| \leq C$ and $U|_M = u$.

First, by computation, we show that we can extend any continuous linear functional 'a little bit' without increasing the norm.

Lemma 20. Suppose $M \subset V$ is a subspace of a normed linear space, $x \notin M$ and $u : M \longrightarrow \mathbb{C}$ is a bounded linear functional as in (26.1) then there exists $u' : M' = \{t' \in V; t' = t + ax, a \in \mathbb{C} \text{ such that} \}$

(26.2)
$$u'|_M = u, \ |u'(t+ax)| \le C ||t+ax||_V, \ \forall \ t \in M, \ a \in \mathbb{C}.$$

Proof. Note that the decompositon t' = t + ax of a point in M' is unique, since $t + ax = \tilde{t} + \tilde{a}x$ implies $(a - \tilde{a})x \in M$ so $a = \tilde{a}$, since $x \notin M$ and hence $t = \tilde{t}$ as well. Thus

(26.3)
$$u'(t + ax) = u'(t) + au(x) = u(t) + \lambda a, \ \lambda = u'(x)$$

and all we have at our disposal is the choice of λ . Any choice will give a linear functional extending u, the problem of course is to arrange the continuity estimate without increasing the constant. In fact if C = 0 then u = 0 and we can take the zero extension. So we might as well assume that C = 1 since dividing u by C arranges this and if u' extends u/C then Cu' extends u and the norm estimate in (26.2) follows. So we are assuming that

$$|u(t)| \le ||t||_V \ \forall \ t \in M.$$

We want to choose λ so that

$$(26.5) |u(t) + a\lambda| \le ||t + ax||_V \ \forall \ t \in M, \ a \in \mathbb{C}$$

Certainly when a = 0 this represents no restriction on λ . For $a \neq 0$ we can divide through by a and (26.5) becomes

(26.6)
$$|a||u(\frac{t}{a}) - \lambda| = |u(t) + a\lambda| \le ||t + ax||_V = |a|||\frac{t}{a} - x||_V$$

and since $t/a \in M$ we only need to arrange that

$$(26.7) |u(t) - \lambda| \le ||t - x||_V \ \forall \ u \in M$$

and the general case follows.

So, we will choose λ to be real. A complex linear functional such as u can be recovered from its real part, so set

(26.8)
$$w(t) = \operatorname{Re}(u(t)) \ \forall \ t \in M$$

and just try to extend w to a real functional – it is not linear over the complex numbers of course, just over the reals, but what we want is the anaogue of (26.7):

$$|w(t) - \lambda| \le ||t - x||_V \ \forall \ t \in M$$

which does not involve linearity. What we know about w is the norm estimate (26.4) which implies

$$(26.10) \quad |w(t_1) - w(t_2)| \le |u(t_1) - u(t_2)| \le ||t_1 - t_2|| \le ||t_1 - x||_V + ||t_2 - x||_V.$$

Writing this out usual the reality we find

(26.11)
$$\begin{aligned} w(t_1) - w(t_2) &\leq \|t_1 - x\|_V + \|t_2 - x\|_V \Longrightarrow \\ w(t_1) - \|t_1 - x\| &\leq w(t_2) + \|t_2 - x\|_V \ \forall \ t_1, \ t_2 \in M. \end{aligned}$$

We can then take the sup on the right and the inf on the left and choose λ in between – namely we have shown that there exists $\lambda \in \mathbb{R}$ with

(26.12)
$$w(t) - \|t - x\|_V \le \sup_{t_2 \in M} (w(t_1) - \|t_1 - x\|) \le \lambda$$

 $\le \inf_{t_2 \in M} (w(t_1) + \|t_1 - x\|) \le w(t) + \|t - x\|_V \ \forall \ t \in M.$

This in turn implies that

$$(26.13) \quad -\|t - x\|_{V} \le -w(t) + \lambda \le \|t - x\|_{V} \Longrightarrow |w(t)\lambda| \le -\|t - x\|_{V} \ \forall \ t \in M.$$

This is what we wanted – we have extended the real part of u to

(26.14)
$$w'(t+ax) = w(t) - (\operatorname{Re} a)\lambda \text{ and } |w'(t+ax)| \le ||t+ax||_V$$

Now, finally we get the extension of u itself by 'complexifying' – defining

(26.15)
$$u'(t+ax) = w'(t+ax) - iw'(i(t+ax)).$$

This is linear over the complex numbers since

$$\begin{aligned} &(26.16) \quad u'(z(t+ax)) = w'(z(t+ax)) - iw'(iz(t+ax)) \\ &= w'(\operatorname{Re} z(t+ax) + i\operatorname{Im} z(t+ax)) - iw'(i\operatorname{Re} z(t+ax)) + iw'(\operatorname{Im} z(t+ax)) \\ &= (\operatorname{Re} z + i\operatorname{Im} z)w'(t+ax) - i(\operatorname{Re} z + i\operatorname{Im} z)(w'(i(t+ax)) = zu'(t+ax)). \end{aligned}$$

It certainly extends u from M – since the same identity gives u in terms of its real part w.

Finally then, to see the norm estimate note that (as we did long ago) there exists a uniqe $\theta \in [0, 2\pi)$ such that

(26.17)
$$\begin{aligned} |u'(t+ax)| &= \operatorname{Re} e^{i\theta} u'(t+ax) = \operatorname{Re} u'(e^{i\theta}t+e^{i\theta}ax) \\ &= w'(e^{i\theta}u+e^{i\theta}ax) \le \|e^{i\theta}(t+ax)\|_{V} = \|t+ax\|_{V}. \end{aligned}$$

This completes the proof of the Lemma.

Of Hahn-Banach. This is an application of Zorn's Lemma. I am not going to get into the derivation of Zorn's Lemma from the Axiom of Choice, but if you believe the latter – and you are advised to do so, at least before lunchtime – you should believe the former.

So, Zorn's Lemma is a statement about partially ordered sets. A partial order on a set E is a subset of $E \times E$, so a relation, where the condition that (e, f) be in the relation is written $e \prec f$ and it must satisfy

$$(26.18) \qquad e \prec e, \ e \prec f \text{ and } f \prec e \Longrightarrow e = f, \ e \prec f \text{ and } f \prec g \Longrightarrow e \prec g.$$

So, the missing ingredient between this and an order is that two elements need not be related at all, either way.

A subsets of a partially ordered set inherits the partial order and such a subset is said to be a *chain* if each pair of its elements *is* related one way or the other. An *upper bound* on a subset $D \subset E$ is an element $e \in E$ such that $d \prec e$ for all $d \in D$. A *maximal* element of E is one which is not majorized, that is $e \prec f, f \in E$, implies e = f.

Lemma 21 (Zorn). If every chain in a (non-empty) partially ordered set has an upper bound then the set contains at least one maximal element.

Now, we are given a functional $u: M \longrightarrow \mathbb{C}$ defined on some linear subspace $M \subset V$ of a normed space where u is bounded with respect to the induced norm on M. We apply this to the set E consisting of all extensions (v, N) of u with the same norm. That is, $V \supset N \supset M$ must contain $M, v|_M = u$ and $||v||_N = ||u||_M$. This is certainly non-empty since it contains (u, M) and has the natural partial order that $(v_1, N_1) \prec (v_2, N_2)$ if $N_1 \subset N_2$ and $v_2|_{N_1} = v_1$. You can check that this is a partial order.

Let C be a chain in this set of extensions. Thus for any two elements $(v_i, N_1) \in C$, either $(v_1, N_1) \prec (v_2, N_2)$ or the other way around. This means that

(26.19)
$$\tilde{N} = \bigcup \{N; (v, N) \in C \text{ for some } v\} \subset V$$

is a linear space. Note that this union need not be countable, or anything like that, but any two elements of \tilde{N} are each in one of the N's and one of these must be contained in the other by the chain condition. Thus each pair of elements of \tilde{N} is actually in a common N and hence so is their linear span. Similarly we can define an extension

(26.20)
$$\tilde{v}: N \longrightarrow \mathbb{C}, \ \tilde{v}(x) = v(x) \text{ if } x \in N, \ (v, N) \in C$$

There may be many pairs (v, N) satisfying $x \in N$ for a given x but the chain condition implies that v(x) is the same for all of them. Thus \tilde{v} is well defined, and is clearly also linear, extends u and satisfies the norm condition $|\tilde{v}(x) \leq ||u||_M ||v||_V$. Thus (\tilde{v}, \tilde{N}) is an upper bound for the chain C.

So, the set of all extension E, with the norm condition, satisfies the hypothesis of Zorn's Lemma, so must – at least in the mornings – have an maximal element (\tilde{u}, \tilde{M}) . If $\tilde{M} = V$ then we are done. However, in the contary case there exists $x \in V \setminus \tilde{M}$. This means we can apply our little lemma and construct an extension (u', \tilde{M}') of (\tilde{u}, \tilde{M}) which is therefore also an element of E and satisfies $(\tilde{u}, \tilde{M}) \prec (u', \tilde{M}')$. This however contradicts the condition that (\tilde{u}, \tilde{M}) be maximal, so is forbidden by Zorn.

There are many applications of Zorn's Lemma, the main one being something like this:-

Proposition 33. For any normed space V and element $x \in V$ there is a continuous linear functional $f: V \longrightarrow \mathbb{C}$ with f(x) = 1 and $||f|| \leq ||x||_V$.

Proof. Start with the one-dimensional space, M, spanned by x and define u(zx) = z. This has norm $||x||_V$. Extend it and you will get an admissible functional f. \Box

Now, finally the review!

150