MIT OpenCourseWare
http://ocw.mit.edu

18.102 Introduction to Functional Analysis

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 26. Thursday, May 14:Review

Now, there was one final request before I go through a quick review of what we have done. Namely to state and prove the Hahn-Banach Theorem. This is about extension of functionals. Stately starkly, the basic question is: Does a normed space have any non-trivial continuous linear functionals on it? That is, is the dual space always non-trivial (of course there is always the zero linear functional but that is not very amusing). We did not really encounter this problem since for a Hilbert space, or even a pre-Hilbert space, there is always the space itsefl, giving continuous linear functionals through the pairing - Riesz' Theorem says that in the case of a Hilbert space that is all there is. I could have used the Hahn-Banach Theorem to show that any normed space has a completion, but I gave a more direct argument for this, which was in any case much more relevant for the cases of $L^{1}(\mathbb{R})$ and $L^{2}(\mathbb{R})$ for which we wanted concrete completions.

Theorem 19 (Hahn-Banach). If $M \subset V$ is a linear subspace of a normed space and $u: M \longrightarrow \mathbb{C}$ is a linear map such that

$$
\begin{equation*}
|u(t)| \leq C\|t\|_{V} \forall t \in M \tag{26.1}
\end{equation*}
$$

then there exists a bounded linear functional $U: V \longrightarrow \mathbb{C}$ with $\|U\| \leq C$ and $\left.U\right|_{M}=u$.

First, by computation, we show that we can extend any continuous linear functional 'a little bit' without increasing the norm.

Lemma 20. Suppose $M \subset V$ is a subspace of a normed linear space, $x \notin M$ and $u: M \longrightarrow \mathbb{C}$ is a bounded linear functional as in (26.1) then there exists $u^{\prime}: M^{\prime}=\left\{t^{\prime} \in V ; t^{\prime}=t+a x, a \in \mathbb{C}\right.$ such that

$$
\begin{equation*}
\left.u^{\prime}\right|_{M}=u,\left|u^{\prime}(t+a x)\right| \leq C\|t+a x\|_{V}, \forall t \in M, a \in \mathbb{C} . \tag{26.2}
\end{equation*}
$$

Proof. Note that the decompositon $t^{\prime}=t+a x$ of a point in M^{\prime} is unique, since $t+a x=\tilde{t}+\tilde{a} x$ implies $(a-\tilde{a}) x \in M$ so $a=\tilde{a}$, since $x \notin M$ and hence $t=\tilde{t}$ as well. Thus

$$
\begin{equation*}
u^{\prime}(t+a x)=u^{\prime}(t)+a u(x)=u(t)+\lambda a, \lambda=u^{\prime}(x) \tag{26.3}
\end{equation*}
$$

and all we have at our disposal is the choice of λ. Any choice will give a linear functional extending u, the problem of course is to arrange the continuity estimate without increasing the constant. In fact if $C=0$ then $u=0$ and we can take the zero extension. So we might as well assume that $C=1$ since dividing u by C arranges this and if u^{\prime} extends u / C then $C u^{\prime}$ extends u and the norm estimate in (26.2) follows. So we are assuming that

$$
\begin{equation*}
|u(t)| \leq\|t\|_{V} \forall t \in M . \tag{26.4}
\end{equation*}
$$

We want to choose λ so that

$$
\begin{equation*}
|u(t)+a \lambda| \leq\|t+a x\|_{V} \forall t \in M, a \in \mathbb{C} . \tag{26.5}
\end{equation*}
$$

Certainly when $a=0$ this represents no restriction on λ. For $a \neq 0$ we can divide through by a and (26.5) becomes

$$
\begin{equation*}
\left|a \left\|u\left(\frac{t}{a}\right)-\lambda\left|=|u(t)+a \lambda| \leq\|t+a x\|_{V}=|a|\left\|\frac{t}{a}-x\right\|_{V}\right.\right.\right. \tag{26.6}
\end{equation*}
$$

and since $t / a \in M$ we only need to arrange that

$$
\begin{equation*}
|u(t)-\lambda| \leq\|t-x\|_{V} \forall u \in M \tag{26.7}
\end{equation*}
$$

and the general case follows.
So, we will choose λ to be real. A complex linear functional such as u can be recovered from its real part, so set

$$
\begin{equation*}
w(t)=\operatorname{Re}(u(t)) \forall t \in M \tag{26.8}
\end{equation*}
$$

and just try to extend w to a real functional - it is not linear over the complex numbers of course, just over the reals, but what we want is the anaogue of (26.7):

$$
\begin{equation*}
|w(t)-\lambda| \leq\|t-x\|_{V} \forall t \in M \tag{26.9}
\end{equation*}
$$

which does not involve linearity. What we know about w is the norm estimate (26.4) which implies

$$
\begin{equation*}
\left|w\left(t_{1}\right)-w\left(t_{2}\right)\right| \leq\left|u\left(t_{1}\right)-u\left(t_{2}\right)\right| \leq\left\|t_{1}-t_{2}\right\| \leq\left\|t_{1}-x\right\|_{V}+\left\|t_{2}-x\right\|_{V} \tag{26.10}
\end{equation*}
$$

Writing this out usual the reality we find

$$
\begin{gather*}
w\left(t_{1}\right)-w\left(t_{2}\right) \leq\left\|t_{1}-x\right\|_{V}+\left\|t_{2}-x\right\|_{V} \Longrightarrow \\
w\left(t_{1}\right)-\left\|t_{1}-x\right\| \leq w\left(t_{2}\right)+\left\|t_{2}-x\right\|_{V} \forall t_{1}, t_{2} \in M \tag{26.11}
\end{gather*}
$$

We can then take the sup on the right and the inf on the left and choose λ in between - namely we have shown that there exists $\lambda \in \mathbb{R}$ with

$$
\begin{align*}
w(t)-\|t-x\|_{V} & \leq \sup _{t_{2} \in M}\left(w\left(t_{1}\right)-\left\|t_{1}-x\right\|\right) \leq \lambda \tag{26.12}\\
& \leq \inf _{t_{2} \in M}\left(w\left(t_{1}\right)+\left\|t_{1}-x\right\|\right) \leq w(t)+\|t-x\|_{V} \forall t \in M
\end{align*}
$$

This in turn implies that

$$
\begin{equation*}
-\|t-x\|_{V} \leq-w(t)+\lambda \leq\|t-x\|_{V} \Longrightarrow|w(t) \lambda| \leq-\|t-x\|_{V} \forall t \in M \tag{26.13}
\end{equation*}
$$

This is what we wanted - we have extended the real part of u to

$$
\begin{equation*}
w^{\prime}(t+a x)=w(t)-(\operatorname{Re} a) \lambda \text { and }\left|w^{\prime}(t+a x)\right| \leq\|t+a x\|_{V} \tag{26.14}
\end{equation*}
$$

Now, finally we get the extension of u itself by 'complexifying' - defining

$$
\begin{equation*}
u^{\prime}(t+a x)=w^{\prime}(t+a x)-i w^{\prime}(i(t+a x)) \tag{26.15}
\end{equation*}
$$

This is linear over the complex numbers since

$$
\begin{align*}
& =w^{\prime}(\operatorname{Re} z(t+a x)+i \operatorname{Im} z(t+a x))-i w^{\prime}(i \operatorname{Re} z(t+a x))+i w^{\prime}(\operatorname{Im} z(t+a x)) \tag{26.16}\\
& \quad=(\operatorname{Re} z+i \operatorname{Im} z) w^{\prime}(t+a x)-i(\operatorname{Re} z+i \operatorname{Im} z)\left(w^{\prime}(i(t+a x))=z u^{\prime}(t+a x)\right.
\end{align*}
$$

It certainly extends u from M - since the same identity gives u in terms of its real part w.

Finally then, to see the norm estimate note that (as we did long ago) there exists a uniqe $\theta \in[0,2 \pi)$ such that

$$
\begin{align*}
& \left|u^{\prime}(t+a x)\right|=\operatorname{Re} e^{i \theta} u^{\prime}(t+a x)=\operatorname{Re} u^{\prime}\left(e^{i \theta} t+e^{i \theta} a x\right) \\
& =w^{\prime}\left(e^{i \theta} u+e^{i \theta} a x\right) \leq\left\|e^{i \theta}(t+a x)\right\|_{V}=\|t+a x\|_{V} \tag{26.17}
\end{align*}
$$

This completes the proof of the Lemma.

Of Hahn-Banach. This is an application of Zorn's Lemma. I am not going to get into the derivation of Zorn's Lemma from the Axiom of Choice, but if you believe the latter - and you are advised to do so, at least before lunchtime - you should believe the former.

So, Zorn's Lemma is a statement about partially ordered sets. A partial order on a set E is a subset of $E \times E$, so a relation, where the condition that (e, f) be in the relation is written $e \prec f$ and it must satisfy

$$
\begin{equation*}
e \prec e, e \prec f \text { and } f \prec e \Longrightarrow e=f, e \prec f \text { and } f \prec g \Longrightarrow e \prec g \tag{26.18}
\end{equation*}
$$

So, the missing ingredient between this and an order is that two elements need not be related at all, either way.

A subsets of a partially ordered set inherits the partial order and such a subset is said to be a chain if each pair of its elements is related one way or the other. An upper bound on a subset $D \subset E$ is an element $e \in E$ such that $d \prec e$ for all $d \in D$. A maximal element of E is one which is not majorized, that is $e \prec f, f \in E$, implies $e=f$.

Lemma 21 (Zorn). If every chain in a (non-empty) partially ordered set has an upper bound then the set contains at least one maximal element.

Now, we are given a functional $u: M \longrightarrow \mathbb{C}$ defined on some linear subspace $M \subset V$ of a normed space where u is bounded with respect to the induced norm on M. We apply this to the set E consisting of all extensions (v, N) of u with the same norm. That is, $V \supset N \supset M$ must contain $M,\left.v\right|_{M}=u$ and $\|v\|_{N}=\|u\|_{M}$. This is certainly non-empty since it contains (u, M) and has the natural partial order that $\left(v_{1}, N_{1}\right) \prec\left(v_{2}, N_{2}\right)$ if $N_{1} \subset N_{2}$ and $\left.v_{2}\right|_{N_{1}}=v_{1}$. You can check that this is a partial order.

Let C be a chain in this set of extensions. Thus for any two elements $\left(v_{i}, N_{1}\right) \in C$, either $\left(v_{1}, N_{1}\right) \prec\left(v_{2}, N_{2}\right)$ or the other way around. This means that

$$
\begin{equation*}
\tilde{N}=\bigcup\{N ;(v, N) \in C \text { for some } v\} \subset V \tag{26.19}
\end{equation*}
$$

is a linear space. Note that this union need not be countable, or anything like that, but any two elements of \tilde{N} are each in one of the N 's and one of these must be contained in the other by the chain condition. Thus each pair of elements of \tilde{N} is actually in a common N and hence so is their linear span. Similarly we can define an extension

$$
\begin{equation*}
\tilde{v}: \tilde{N} \longrightarrow \mathbb{C}, \tilde{v}(x)=v(x) \text { if } x \in N,(v, N) \in C \tag{26.20}
\end{equation*}
$$

There may be many pairs (v, N) satisfying $x \in N$ for a given x but the chain condition implies that $v(x)$ is the same for all of them. Thus \tilde{v} is well defined, and is clearly also linear, extends u and satisfies the norm condition $\mid \tilde{v}(x) \leq\|u\|_{M}\|v\|_{V}$. Thus (\tilde{v}, \tilde{N}) is an upper bound for the chain C.

So, the set of all extension E, with the norm condition, satisfies the hypothesis of Zorn's Lemma, so must - at least in the mornings - have an maximal element (\tilde{u}, \tilde{M}). If $\tilde{M}=V$ then we are done. However, in the contary case there exists $x \in V \backslash \tilde{M}$. This means we can apply our little lemma and construct an extension $\left(u^{\prime}, \tilde{M}^{\prime}\right)$ of (\tilde{u}, \tilde{M}) which is therefore also an element of E and satisfies $(\tilde{u}, \tilde{M}) \prec$ $\left(u^{\prime}, \tilde{M}^{\prime}\right)$. This however contradicts the condition that (\tilde{u}, \tilde{M}) be maximal, so is forbidden by Zorn.

There are many applications of Zorn's Lemma, the main one being something like this:-

Proposition 33. For any normed space V and element $x \in V$ there is a continuous linear functional $f: V \longrightarrow \mathbb{C}$ with $f(x)=1$ and $\|f\| \leq\|x\|_{V}$.

Proof. Start with the one-dimensional space, M, spanned by x and define $u(z x)=z$. This has norm $\|x\|_{V}$. Extend it and you will get an admissible functional f.

Now, finally the review!

