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147 LECTURE NOTES FOR 18.102, SPRING 2009 

Lecture 26. Thursday, May 14:Review 

Now, there was one final request before I go through a quick review of what we 
have done. Namely to state and prove the Hahn-Banach Theorem. This is about 
extension of functionals. Stately starkly, the basic question is: Does a normed space 
have any non-trivial continuous linear functionals on it? That is, is the dual space 
always non-trivial (of course there is always the zero linear functional but that is 
not very amusing). We did not really encounter this problem since for a Hilbert 
space, or even a pre-Hilbert space, there is always the space itsefl, giving continuous 
linear functionals through the pairing – Riesz’ Theorem says that in the case of a 
Hilbert space that is all there is. I could have used the Hahn-Banach Theorem to 
show that any normed space has a completion, but I gave a more direct argument 
for this, which was in any case much more relevant for the cases of L1(R) and L2(R) 
for which we wanted concrete completions. 

Theorem 19 (Hahn-Banach). If M ⊂ V is a linear subspace of a normed space 
and u : M −→ C is a linear map such that 

(26.1) |u(t)| ≤ C�t�V ∀ t ∈ M 

then there exists a bounded linear functional U 
U 

: V −→ C with �U� ≤ C and 
= u.

M 

First, by computation, we show that we can extend any continuous linear func
tional ‘a little bit’ without increasing the norm. 

Lemma 20. Suppose M ⊂ V is a subspace of a normed linear space, x ∈/ M 
and u : M −→ C is a bounded linear functional as in (26.1) then there exists 

= {t� ∈ V ; t� = t + ax, a ∈ C such that u� : M � 

(26.2) u� u�(t + ax) ≤ C�t + ax�V , ∀ t ∈ M, a ∈ C.= u, | |
M 

Proof. Note that the decompositon t� = t + ax of a point in M � is unique, since 
t + ax = t̃ + ãx implies (a − ã)x ∈ M so a = a, since x ∈/ M and hence t t̃ as˜ = 
well. Thus 

(26.3) u�(t + ax) = u�(t) + au(x) = u(t) + λa, λ = u�(x) 

and all we have at our disposal is the choice of λ. Any choice will give a linear 
functional extending u, the problem of course is to arrange the continuity estimate 
without increasing the constant. In fact if C = 0 then u = 0 and we can take 
the zero extension. So we might as well assume that C = 1 since dividing u by C 
arranges this and if u� extends u/C then Cu� extends u and the norm estimate in 
(26.2) follows. So we are assuming that 

(26.4) |u(t)| ≤ �t�V ∀ t ∈ M. 

We want to choose λ so that 

(26.5) |u(t) + aλ| ≤ �t + ax�V ∀ t ∈ M, a ∈ C. 

Certainly when a = 0 this represents no restriction on λ. For a = 0 we can divide �
through by a and (26.5) becomes 

t t
(26.6) |a||u( 

a 
) − λ| = |u(t) + aλ| ≤ �t + ax�V = |a|� 

a 
− x�V 
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and since t/a ∈ M we only need to arrange that 

(26.7)	 |u(t) − λ| ≤ �t − x�V ∀ u ∈ M 

and the general case follows. 
So, we will choose λ to be real. A complex linear functional such as u can be 

recovered from its real part, so set 

(26.8)	 w(t) = Re(u(t)) ∀ t ∈ M 

and just try to extend w to a real functional – it is not linear over the complex 
numbers of course, just over the reals, but what we want is the anaogue of (26.7): 

(26.9) |w(t) − λ| ≤ �t − x�V ∀ t ∈ M 

which does not involve linearity. What we know about w is the norm estimate 
(26.4) which implies 

(26.10) |w(t1) − w(t2)| ≤ |u(t1) − u(t2)| ≤ �t1 − t2� ≤ �t1 − x�V + �t2 − x�V . 

Writing this out usual the reality we find 

= 
(26.11)	

w(t1) − w(t2) ≤ �t1 − x�V + �t2 − x�V ⇒ 

w(t1) − �t1 − x� ≤ w(t2) + �t2 − x�V ∀ t1, t2 ∈ M. 

We can then take the sup on the right and the inf on the left and choose λ in 
between – namely we have shown that there exists λ ∈ R with 

(26.12)	 ≤ supw(t) − �t − x�V
t2∈M 

(w(t1) − �t1 − x�) ≤ λ 

inf (w(t1) + �t1 − x�) ≤ w(t) + �t − x�V ∀ t ∈ M. ≤ 
t2∈M 

This in turn implies that 

(26.13)	 −�t − x�V ≤ −w(t) + λ ≤ �t − x�V = ⇒ |w(t)λ| ≤ −�t − x�V ∀ t ∈ M. 

This is what we wanted – we have extended the real part of u to 

(26.14) w�(t + ax) = w(t) − (Re a)λ and |w�(t + ax)| ≤ �t + ax�V . 

Now, finally we get the extension of u itself by ‘complexifying’ – defining 

(26.15) u�(t + ax) = w�(t + ax) − iw�(i(t + ax)). 

This is linear over the complex numbers since 

(26.16) u�(z(t + ax)) = w�(z(t + ax)) − iw�(iz(t + ax) 

= w�(Re z(t + ax) + i Im z(t + ax)) − iw�(i Re z(t + ax)) + iw�(Im z(t + ax)) 

= (Re z + i Im z)w�(t + ax) − i(Re z + i Im z)(w�(i(t + ax)) = zu�(t + ax). 

It certainly extends u from M – since the same identity gives u in terms of its real 
part w. 

Finally then, to see the norm estimate note that (as we did long ago) there exists 
a uniqe θ ∈ [0, 2π) such that 

(26.17)	
|u�(t + ax)| = Re e iθ u�(t + ax) = Re u�(e iθt + e iθ ax) 

= w�(e iθ u + e iθ ax) ≤ �e iθ(t + ax)�V = �t + ax�V . 

This completes the proof of the Lemma. � 



�� �� 

149 LECTURE NOTES FOR 18.102, SPRING 2009 

Of Hahn-Banach. This is an application of Zorn’s Lemma. I am not going to get 
into the derivation of Zorn’s Lemma from the Axiom of Choice, but if you believe 
the latter – and you are advised to do so, at least before lunchtime – you should 
believe the former. 

So, Zorn’s Lemma is a statement about partially ordered sets. A partial order 
on a set E is a subset of E × E, so a relation, where the condition that (e, f) be in 
the relation is written e � f and it must satisfy 

(26.18) e � e, e � f and f � e = ⇒ e = f, e � f and f � g = ⇒ e � g. 

So, the missing ingredient between this and an order is that two elements need not 
be related at all, either way. 

A subsets of a partially ordered set inherits the partial order and such a subset 
is said to be a chain if each pair of its elements is related one way or the other. 
An upper bound on a subset D ⊂ E is an element e ∈ E such that d � e for all 
d ∈ D. A maximal element of E is one which is not majorized, that is e � f, f ∈ E, 
implies e = f. 

Lemma 21 (Zorn). If every chain in a (non-empty) partially ordered set has an 
upper bound then the set contains at least one maximal element. 

Now, we are given a functional u : M −→ C defined on some linear subspace 
M ⊂ V of a normed space where u is bounded with respect to the induced norm on 
M. We apply this to the set E consisting of all extensions (v,N) of u with the same 
norm. That is, V ⊃ N ⊃ M must contain M, v 
certainly non-empty since it contains (u,M) and has the natural partial order that 

= u and �v�N = �u�M . This is 
M 

(v1, N1) � (v2, N2) if N1 ⊂ N2 and v2 

order. 
= v1. You can check that this is a partial 

N1 

Let C be a chain in this set of extensions. Thus for any two elements (vi, N1) ∈ C, 
either (v1, N1) � (v2, N2) or the other way around. This means that 
 
(26.19) Ñ = {N ; (v,N) ∈ C for some v} ⊂ V 

is a linear space. Note that this union need not be countable, or anything like that, 
but any two elements of Ñ are each in one of the N ’s and one of these must be 
contained in the other by the chain condition. Thus each pair of elements of Ñ is 
actually in a common N and hence so is their linear span. Similarly we can define 
an extension 

(26.20) ṽ : Ñ −→ C, ṽ(x) = v(x) if x ∈ N, (v,N) ∈ C. 

There may be many pairs (v,N) satisfying x ∈ N for a given x but the chain 
condition implies that v(x) is the same for all of them. Thus ṽ is well defined, and 
is clearly also linear, extends u and satisfies the norm condition |ṽ(x) ≤ �u�M �v�V . 
Thus (ṽ, Ñ) is an upper bound for the chain C. 

So, the set of all extension E, with the norm condition, satisfies the hypothesis 
of Zorn’s Lemma, so must – at least in the mornings – have an maximal element 
(ũ, M̃). If M̃ = V then we are done. However, in the contary case there exists 

M. This means we can apply our little lemma and construct an extension 
(u�, M̃ �) of (ũ, M̃) which is therefore also an element of E and satisfies (ũ, M̃) �
(u�, M̃ �). This however contradicts the condition that (ũ, M̃) be maximal, so is 
forbidden by Zorn. � 

x ∈ V \ ˜
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There are many applications of Zorn’s Lemma, the main one being something 
like this:

Proposition 33. For any normed space V and element x ∈ V there is a continuous 
linear functional f : V −→ C with f(x) = 1 and �f� ≤ �x�V . 

Proof. Start with the one-dimensional space, M, spanned by x and define u(zx) = z. 
This has norm �x�V . Extend it and you will get an admissible functional f. � 

Now, finally the review! 




